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ABSTRACT

Under this effort work has been done to derive and use
closed form expressions for generalized impedance parameters
involving rectangular, conducting patches in free space.*
A Galerkin model for the interaction between two wires, a wire
and a patch and two patches has been developed. Basis functions
sinusoidal in the direction of the current and triangular in
the transverse direction have been used. Farrar's Integration
technique has been used so as to give most of the results of
the model in closed form.

The original proposal called for the patches to be parallel.
This restriction has not been applied and the formulation is
general with respect to the relative orientations of the trans-
mitter subsection and the receiver subsection.
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CHAPTER 1: FORMULATION OF THE PROBLEM

1.0 Introduction

The treatment of conducting surfaces using the method of

moments has been a complex problem. Wire grid models have been

used with some success and are currently available in the GEMACS

system (Balestri et. al. (1977)), among others. Wire gridding

gives good results for far field problems and scattering problems.

If impedance, currents or near fields are required, or if the surface

contains slots comparable to the size of the grid, the results from

wire gridding are poor. Wire grid models have been criticized

because of questions of their validity (see, for example, Lee et.

al, 1976). Surface current models have been developed by Knepp

and Goldhirsh (1972)., Albertson et. al. (1974), Wang (1974),

Wilton et. al. (1976), and Singh (1977a). Both Knepp and Albert-

son et. al. use the magnetic field formulation with pulse basis

functions and point matching. Wilton, et. al. use the electric

field integral equation with pulse basis functions and point

matching.

Wang uses the electric field formulation. His expansion

functions are sinusoidal in the direction of the current and uniform

in the transverse direction. The same applies to his testing

functions. The details of his impedance calculation are not

given.

Singh has treated surface patches where both basis and testing

functions are sinusoidal in the direction of the current as well as

II
I. .- ,
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in the transverse direction. In addition, non-rectangular shapes

of basis function patches are permitted.

The limiting factor in all techniques mentioned above is the

large amount of CPU time required to numerically perform up to four

integrations for each matrix element and to solve the resulting

matrix equations. It is to be noted that if X wavelengths is some

average linear dimension of a surface and if v basis functions per

wavelength are to be used, the core required for the matrix is of

4
the order of (kv) . The CPU time required to fill such a matrix

is also of the order of (tv) 4 and the CPU time required to solve

the equations is of the order of (W)6 Such high order dependence

may result in CPU times of the order of several hours for problems

of moderate size (about 2 or 3 wavelengths square).

Recently, a new integration technique due to Farrar (1978)

et. al. has been published. This technique has been used to perform

some of the integrations in closed form and thereby reduce comput-

ation times drastically.

The problem has been formulated in the next three subsections.

Subsection 1.4 is devoted to defining the notation for the coord-

inate system to be used in the model which is developed in

Chapter 2.

I M
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1.1 Basis Functions for Wires

Consider a wire subsection i extending from £ - I to 1 = +t2' The

(current) basis function Oi(l) is given in terms of £1 and t2 as

"sin k(k + 1 1)

sin kX1

sin k(I 2 - L)
(  sin k2 - 2 (.1.1)

0 elsewhere

where

21r.
k = 2- is the wave number.

Lengths k, 1 2 are either equal or one of them is zero. Basis functions

Yi(t) are pictorially depicted in figure 1.1.1.

Figure 1.1.2 shows a wire divided into several basis functions. The

presence of a half sinusoid at the end, if that end forms a junction, may be

noted. The half sinusoid implies the presence of a point charge at the end.

The expressions in the next sections take this point charge into account.

O(Z) is dimensionless. The current on the wire segments in the configuration

is given by

ii

where Ii is the current on wire segment i, y. is the unit vector in the t
1i i

direction for wire segment i.

*1
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(a)f kf 0.

Figure 1.1.1 Basis functions for wires

j I4
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Ih f Llic st--irt eiJ3 is at a junction

(c) If tI&2! ti1Iili cnd is at a junction

(d) Jf bt nsaea ucin

Figure 1.1.2 Division of a wire into basis functions.
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1.2 Basis Functions for Surfaces

Consider a surface subsection i carrying current in the u direction and

extending y = -X3 to 2.4 and z = -t1 to k2" The current density basis function

for J.(y,z) is given in terms of tI, 2' and k as iY) i(z)_ where
12' 3 24

Z 3 + y

ZA 3Y

(4 

-
y

i (y )  0 < y < Z
t44

0 elsewhere

Lengths £ and k4 are either equal or one of them is zero. It is to be
3 4

noted that the (x,y,z) coordinate system is local to the surface subsection

under consideration and is defined in such a way as to have the current in the

subsection flowing in the . direction. An overlapping subsection carrying

current in the orthogonal direction is a part of the set of basis functions.

Thus the method of moments solution may be expected to contain current density

components in any direction.

Depending upon the values of 1 2' Z3 and k4 nine different types of

basis functions are possible. These and their two dimensional representations

are shown in figure 1.2.1. Figure 1.2.2 shows the complete set of basis

functions for a surface ABCD whose edges AC and CD are connected to other planes.

The current density on the surface segments in the configuration is given by

*In this report, the term "surface patch" implies a surface expansion function

and not a physical section of the surface. It is assumed that a local coord-

ate system has been arranged so as to. have the patch in the yz plane, the

z direction being the direction of the current.

-I. -



1-7

*0

*11

33

.4.) a

14 0 f

- -- - -- -'- -

0

4. 4 4j
044 r. 40

0 010 w-

IV '4)Cf0) r-4

-4) 04.

*d 01 0d)

-' 00)

4 r

Q) .0 a) I.



1-8

coJ

A jr-- 104

.'4 4J )
44

U) C: (D
0- 4 I

U $ 4 to

6 7 LU 0)4-)

Q L 14.4 4 4' U ..*4

0 3 wU

4)C

IT -U 9 MU

-4 0
04 )

4) 0-

44

H 0 C



1-9

E . E Pi(Y)O(z).ji. 122

where J.i is the contribution of the current density basis function

4 iCy) iCz)u to the total current distribution. All J. are unknowns in the

problem and have units of amps m . and iare dimensionless functions.
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1.3 Method of Moments Formulation

The geometry of the problem under consideration may involve wires and

surfaces. The unknown in the case of wires is current whereas the unknown

in the case of surfaces is current density. The method of moments yields the

following system of linear equations:

[ Z W I W S i r I [ 1 ] [ V W ] 1[zs wt] [5 s ] J ] [vs] 1.3.1)

The superscripts W or S indicate whether the submatrices in question

pertain to wires or surfaces. Furthermore,€W
Vi = OE(£).u£. i(£)d£ (1.3.2)

and 1

Vi = ffE(Yz).u i(z)ti(Y)dzdy (1.3.3)

where E(.) is the incident electric field. It is to be noted that V.S-- 1

has units of volt-m. It may be noted also that whereas ZWW has units of ohms,

*WS SW SS2Z and Z have units of ohm-m and Z has units of ohm-m . The mutual impe-

W
dance Z between two wire segments (at y'=O and at n=0) shown in figure 1.3.1

is given by

W 2 2z j f oIi(OH--€ 1?(O, ;O'z'), qb(z')U z, dz'dC

(1.3.4)

9J -J -



w~~~~xvlu at qirivli f

xx

SoreClmomtj

b

a

Figure 1.3.1: The~ physical arrangement for o3muting autual

is a,b,c.
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Here, G(O, ;O,z') is the free space dyadic Green's function and

has units of ohm-m - . The mutual impedance Z between a wire and

a surface is given by

_W . ) . 4 .. -
7...S= J i¢ . 1_ P ,j ') / '-G(O, ;y',z'). j(z')u , dz'dy'dk

(1.3.5)

Similarly,

SW 42 f(2
SW , fi(W)u . ZG(n,CO,z').j(z')uz , dz'ddr

(1.3.6)
and finally,

zSS f 4 Sf2 '*f S( f (yf

3 3

j, (z')uz'dz'dy'd dl

In the above equations, the element i has been used as the

receptor element and j has been assumed to be the source element.

Because of the symmetry of the equations, this choice is arbitrary.

In the next chapter, techniques for evaluating the impedance quant-

ities are studied.

I-
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1.4 A Notation for the Coordinate Systems

Figure 1.3.1 shows a receiver and a transmitter for which

the impedance model is to be developed.

In general, the coordinates and distances from a point

(O,y',z') on the (x,y,z) sy.%tem to a point (0,n,C) on the

(X,nC) system are of intcrest. Of interest also are some of

these values when one or tare elements of the set <yn,C> are

zero. A three subscrlr't rotation is used, each subscript being a 0

or a 1. If a subscript is 0, the corresponding variable in the set

<, 1 ,C> is 0. If t2he subscript is 1, the corresponding variable

in the set is present. Thus, r0 0 0 is the distance between (0,0,z')

on the (x,y,z) system and (0,0,0) on the (x,n,C) system. Simil-

arly, r0 1 1 is the distance between (0,0,z') on the (x,y,z) system

and (0,n, ) on the (X,n,C) system. This notation is extended to

allow the value (-1) for the subscripts. Under this extension,

r1 is the distance between (0,0,z') on the(x,y,z) system

and (0,n, -;) on the (X,n,c) system. Thus, when the subscript is

-1, the corresponding variable in the set <y n,C> is negated.

The distance from (0,y',z') to (0,n,r) is given by the vector

LM1
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i= (Xll, Yll, Zll) = KOOO + y'Y  + un -

where (1.4.1)

u = (0, -1, 0),

-y
-- r ( a x n , ay , a z )

and u = (a x, a y, az) (1.4.:)

In the above equation, r000 is the vector from the point

(0,0,z') on the (x,y,z) system to the origin of the (X,n,C) coord-

inate system., a, a , axnay , azn are the directional

cosines between the respective coordinate axes. Following the

properties of directional cosines,

2 2 2
y z1 (1.4.3a)

2 2 2a + a + a . (1.4.3b)Xi] yn z

Quite frequently, it is desired that some of the distances be expressed

as a quadratic trinomial in one of the variables. A notation for syst-

ematically doing so is presented here. The starting point under this

notation is always rll I which may be written as

I

I *,
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r2l I (y',n,l) R - + u)" (rii 0 +

= 2 2 C 2(r 1 0 + 2ri1 0.ua- + 2) = (R + R + L ). (1.4.4a)0 1

The arguments of r... may be omitted if they are the variables

y',n and 4. The C in equation 1.4.4 is a superscript, not power.

Similarly,

ril = (RY + Ry1y'+ y,2) and (1.4.4b)

r2 (Rn + R n + i2 (1.4.4c)
ill 0 1

Each of the coefficients of the quadratic trinomials R.( ') can

themselves be written as polynomials of degree (2-i) in other var-

iables. Thus, for example,

X (y', = (o +( + U n)
100 -100 + n* 10l0 ?1

2 2 + RCq 2(r100 + (2r 100"2d n + n) R 00 n +

(1.4.5)

Table 1.4.1 shows all such expansions that have been used in

this report. They have been derived using a development similar to

1.4.4a, above.

Whenever the ensuing text calls for a coefficient one of

whose subscripts is 2, the coefficient is assumed to have the value

1. Whenever the sum of the subscripts is greater than 2, the value

of the coefficient is 0.

The vector 211 = (xlll' ylII, 0) is also of importance in the

calculations of impedance in cases where az z #.

S I - - - -
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Plll R 0 0 0 + Vy , y' +v T + v C (1.4.6)

where

(0, -1,0), v = ( a, 0), v ,(ac, a , 0).

(1.4.7)

Expansions for p that are similar to those given above for r

are possible and are represented by

P2 A = (AoC+ AC + C2) V2 (1.4.8)
illl 0~ 1 C

The expansions are similar to those for rllI except that none

of the coefficients of the trinomial is known apriori to be 1. It
2

is convenient to express the trinomial using the multiplier v (as

has been done in equation 1.4.8), when expansions about are involved.

It is more convenient to express it using three coefficients (as has

been done in the expansions for AC in table 1.4.2) when expansions
0

about n or y' are involved. All expansions are listed in

table 1.4.2. It is noted that most expansions do not exist when

4C V =0.

Finally, the quantities ap, and cos e ll are expressed as a

function of C thus:

Rill- u (il0 + y_ ).uaPC= [lll (AC + .AC +C2)1/2-

V
2 (1 AC (C) vAC)

i I 1 = I (1"

Y (Ag + A"C+ ~2) (Ag '+ ACC+ ~2) (1.4.9)

cos (illl) = 111 = 10 + az (1.4.10)
rlill rillI
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TABLE 1.4.1: Expansion of the Distance Parameters into Quadratic

Trinomials

Coefficient Expansion Interpretation

R R; + R C + 2 r2

RC y' + y' , y2 2

0 R00 R01 Y + Y r11 0

)+ 2 2
0 R00 + 001 + r01 0

R 0+ R 1y 2r 11 0 ' u r

Ry Rny) + R Y210u
1 10 11 1-110"-y

+ ' + 2 2
00 000 001 0 10

R y yn + Rcln2r u
01 010 l 011 10 y

00000 + 00 1  YE1002

R n Rn,+ Rcy y 2r01 010 011 100 -

Ry' R~y + RY'n u
10 100 101 2010

R;Y' R Y'n 2ay,
11 il0

U /
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TABLE 1.4.1 (continued):

Coefficient Expansion Interpretation

R~rl Rc~ny'+ Rn y210 100 101 -10

RC ri R~ny2a r)(=0)
11 110

00000

Rcy'n2r u001 -000 -1,

RC In2r u010 -000f -y'

R'n 2a

00000

R cty 2r . t,001 -000*-

Rcrly,2r u010 -000-

100 -0-
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TABLE 1.4.1 (continued):

Coefficient Expansion Interpretation

2a (0)
101

RcY'I 2ay,
110 c

R1y' -000

101 2a oo

R ny '  2a 0)110 C

$

;,
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TABLE 1.4.2: Expansion of p in Quadratic Trinomials

Coefficient Expansion Interpretation

A V 2 (A; + AC + 2 P 2

0 Y' + Agy ' y + Ay' y2 2
S00 -01 02 110/v

AC A~q + + A 2 p 2
0 00 01 A02 110/v

AY' + A Y' ,2p
1 10 1

AC + I l ii 2p /VO. /21 1I0 11lln0

A y' A y'n + Ay'n_ o + 2 /v 2

00 000 00 002 010C

y' 00Y' + Cy' 2 Vy/2

01I '010 '011 1210 •

A+ y AAy'n 2/ 2

02 020 vy/v

+ + 
/ , 2

A A"ny' + ^A"y' , A y y, C
00 0 0 0  0 0 1  A 0 0 2

A0n AnY + A2 1YyV

Ol 011 Ol 2

AI A qy ^vY 2 /V2

02 020 ) /vCI
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Table 1.4.2 (continued):

Coefficient Expansion Interpretation

A~y A~y'q + ACY'nn C 1

10 10 101

2v,.A Y' ii0< ~
111

A A~ny' + Aqy' , _.100" v
10 100 101

11 110 2vC.v/v2 (r 0

A y 'n p2 /V 2

000 O000/v

L.Acy ' n 2p .... v /v2_

001-u -

Ay' 2 / 2

002 n/C

Ac*r 2~ . ,/v 2

01 -i.

A y'n 2 2
020 vy

Ay' 200/ 2
000 000 v
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TABLE 1.4.2 (Continued):

Coefficient Expansion Interpretation

001-

002 v 2/v

010 L0o 2

y, /

A~r'y' 2 2020 v..o/v

I,Ay'n

1 011 2y..oov 2

Acy 'rl2 v

100 -
2

110 2vy v /,2

100

O2O vr/v

22Y'2101 2vy .v/vr

--ny 2

1i0 2 v, .v /v

i012Vy_ .,v v 2
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CHAPTER 2. CLOSED FORM SOLUTIONS FOR IMPEDANCES

2.1 Coupling Between Two Surface Segments

The mutual impedance between two surface segments i and j is

given by (see equation 1.3.7)
4 2 ,G(

= J 3i(n)dnJ 1i()u C d fiJj(Y')dy' f (n,C;y',z').
*3 £3 i £3 J-1

j(z')u ,dz' (2.1.1)
j -Z

To calculate this mutual impedance we first consider the mutual

impedance between the surface segment i and a wire on segment j at a

given value of y'. This mutual impedance is given by

SW £4 Z2 Z~ud 2-zd'Z (y f) 3 3i (n)d, r i(j)ud r, ;y' z'). (z)uz dz

(2.1.2)

From 2.1.1 and 2.1.2 it is easy to see that-I

ZSS=f4 j(y')ZiW(y)dy' (2.1.3)

Similarly,

ZS S  = 1 ih )Zij (n)dn (2.1.4)

1 3

where ZWS (n) is the mutual impedance between a wire on surface

segment i at a given value of n and the surface segment j. Equa-

tions 2.1.3 and 2.1.4 portray the hierarchy between ZSand Z w

and Zs W in that the integration of the latter with respect to one

I I .... .. ....... . .. I I i l . . . . . . . . .. I I '' ,
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of the coordinates gives the former. Thus, finding Z WSor Z SW is

a step towards finding ZS S. The computation of ZWS and Z is

treated in the next section. The problem of evaluating ZS S using

equation 2.1.4 is revisited in Section 2.5 following the computation

of ZW S and ZS W in Section 2.4.

.r'
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2.2 Coupling Between Wire and Surface Segments

Using arguments similar to those used in Section 2.1, it is

easily seen that

4

=i (3 i zj (n)dn (2.2.1)

where Z W. (n) is the mutual impedance between a wire on segment i1J

at n and the wire j. Z. .W(y') defined in equation 2.1.2' is given
1)

by

(4
z j(Y') =P J (I~ ) Z 13(rI, y) d (2.2.2)

1 3
where I1 (n,,y') is the mutual impedance between a wire on segment i

at ni and a wire on segment j at y'.

Similarly,

WS =j(,Zj~ld (2.2.3a)

3

WS fW t(Y) 1 (y'n)dy'. (2.2.3b)

z~~ ~ fJ Y)i
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Equations 2.2.3 and 2.2.2 portray the hierarchy between Z

and ZSW and Z in the sense that integration of the latter with

respect to y' or n gives ZW S or ZSW respectively. Thus, finding

WW.W WWz is a step towards finding Z or Z SW . The computation of Z
is treated in the next section. The problem of evaluating ZW  or

Zs W from ZW W is revisited in section 2.4.



2.3 Wire-to-Wire 
Coupling2-

Ecuations 1.3.4 through 1.3.7 contain the term

1. .

as their innermost integral. This cuantity is the directed

component of the electric field at (O,Ti,t.) due to a unit current

on subsection j and has unt fvlsm amp . The result of

the integration is a vector whose dot product with U. ;ives

EF,.Ci)/Ij. A closed form solution has been derived by Schelkunoff

and Friis (1952) and restated in convenient terms by Sillqh* (1977).

When I..i is 1, E,- 4i) is given by

=- + azj + a,,,F, (2.3.2'

where

1' '2
(2.3.3)

z4ii1 11o z r,1

2

*Pages 40-42.
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and

E k.. - .. )Oj(z')Iexp(-jkr 1 )P 4 
1tw E p-L ,'0 it

1 2

+ . W'~'~2 z) cose exp(-jkr1 )

(2.3.5)

where

~ C. = .) -(.)(2.3.6)

9.12+0 11-0

Since Z WWis independent of I., it is computed using
ii

Ij =1 and is given by

z .(y'n O jj(0E (y,,di (2.3.7)

Since the arguments of the functions Z C.),W . and

E ..)provide the context for the subscripts i and j, these

subscripts are dropoed in the ensuing discussion.

Substituting 2.3.3, 2.3.4, and 2.3.5 into 2.3.2 and then

substituting 2.3.2 into 2.3.7, the following equation is obtained:

WW4 ww WW
Z (y',n) = E b t Zt (2',Y',r) (2.3.8)

9, 6 -. -''g - -
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where

wheA [ ( z')]; 
(2 .3.9a)

2 4 4irwe i'L

b = k A[$ (z)J; (2.3.9c)3 4irwe

b = --- (2.3.9d)
4 4w E ,

and where

Z2 (_ jkrlll)
Z (''Y') =- " exp(-r 1 1O dl d (2.3.10a)

t2 exp(-jkr 1 1 1

Z2  (L',y',,) = a z 0(c) d (2.3.10b)

z WW (V'y',r) = 2a OWexp(-jkr ill d (2.3.10c)

3 f C Plll
-£!1

Z = 
2  cosek expjkr1 1)

Z4 (£' ,y',) =a d( d (2.3.10d)

-tI 
Pill

-£IJ
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In the above equations, Z1  is the contribution of the

current discontinuity on the source wire. Z is the contribution
2

of the z directed field generated by the source wire. This

contribution is zero when the two wires are orthogonal to each

other. Z is the contribution of the p directed field
3

generated by the source wire segment when it has a current

discontinuity at one end. The contribution of Z is zero
3

whenever the two wire segments are parallel or when the source

segment has no current discontinuities on it. Z is the
4

contribution of the p directed field generated by the

source wire. This contribution is zero when the two wires are

parallel.

Theorem 2.3.1

Each of the component impedances Z1 through Z4 can be

written as linear combinations of the impedance quantity

Z0 (0 ',y',n,v,s,) where

WW 
2  

2) ' S a

Z 0 ...... f W @() A0 + At; +;2) rIi, exp(-Thr 1 il d,

(2.3.11)

, I
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Proof

The proof constitutes finding the linear combinations of

Z ( (......) that give the component impedance in question.

£2 [ 1
z= ww-2OC exp(-jkr 1 1 1 ) d

= - J (.) (i + jkrll) ( R] + C) r- exp(-jkrll) dc

1 1 1-h WW
=- E (jk) g ( R ) Z (...0,h,g-3) (2.3.12a)

g=0 h=0 0

z (...) = a Z (...0,0,-i) (2.3.12b)
2 zC 0

£2 ( A, +

3 =T J- OW+4c~2  exp(-jkr1 ) dC

-tI

1 C 1-h
( Al ) Z (... (-2),h,O) (2.3.12c)

h=O 0

I



(£W ( A1  +) ('110

4 ~ - (A C +A C + 2)r

11 1-g 1-h g
E (Z 110) (A 1  a, Z (.. (-2),(g+h),-1)

g=O Z 0

(2. 3. 12d)

End of Proof

The use of theorem 2.3.1 suggests figure 2.3.1 as a flowchart

WWof a procedure to calculate Z . Note that each of the 4 blocks on

the right hand side calls for ZoW
0w

A~ closed form solution for Z Wis developed next. In developing

this solution, it is assumed that

ix 5
e 3x= i~o a. (X)' (2.3. 13)

where x is less than 7T/2. According to Abramowitz and Stegi *.

this approximation will result in less than .09 percent error.

More terms may be included for qreater accuracy. However, the

errors developed during solving the method of moments equations

are likely to undo any potential benefits of qrciter accuracy.

*Page 76:

a 0 a 1 1 =1 a 2 = 49670 a 3 = 16605 a .037 05 a = .00761
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The above integration range is divided into the (-I, to 0)

and (0 to Z2) ranges. In the first, a change of variables from

4 to - gives

2 (£s sifl(k(La.-O) hV
z . . . . . . ...  E~ ika (AC 4(-)cA + 2)

0 ~ G=j 5sin~ki) J

x C exp-jk ll(l~a d4(2.3.14)

a~l a

of integration. Application of equation 2.3.13 gives
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Calculate
distances, currents,

current slope,
relative orienta-

tion of the wires

discontinuity Yes Calculate Z1

(eqn 2.3.10a)

Calculate Z

Yees

Curen Calculate Z4

non-paallel(eqn 2.3.10c)

Yesires

equation 2.3.8 ]
Figure 2.3.1: A Procedure for Calculating

zWW.
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2 (-1)as exp(-jkr1 1 0) 5
( 0 =i 2j sin kZ Z ai (jk) i

a i=O

x (AO +(-1)0 A1I =+=) s r(

x -- rll(-)a + r 1ll )i- + ,- rl(-l)c +rllOi)] d

(2.3.16)

which by repeated use of the binomial theorem gives

2 (-l)as exp(-jkrllo) 5 i m i-m i 1 (m) [ipm

Z W ...... ) r r ai(jk) i  E Z (M tnj2j sin ki=O O n='O p=O

x (-i)m  
- (-l)i4n+P) i - m - p r 1 0  f (AC + (-1) A C + 2) v

1 0

ix s ra C m-n rn d4 (2.3.17)

The quantity inside the integral is normalized (i.e., the inte-

gration limits are made to be 0 and 1) by writing

C f, x and noting that r 1 1 (_)O =(RI + (-1)aRC 6 + C2) to give

-
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= 2 (-1) as exp(-jkr ) z1A r 01

0 .=1 2j sin(kL a)

I i rn i-rnn (
x Z a. (jkxLa) 1 i m

i=O m=O n=0 pO ) [ P

x [rilO
+ p

f rOjn+PZ 2  + ([A], [RI)

(2.3.18)

where the elements Ai of the vector (A] and Ri of the vector (R]

are given, for 0<i<2, by

i ~ (~-i)°  iAR ; R1 (2.3.19)
= 0

and where

1

ZA2NPQ ([A],[R]) f (A(x)) N x (R(x)) Q dx (2.3.20)
0

where

2 _ 1 + 2 . WeN0A(x) A0 + A x + Ax ; R(x)!- R + R x + R2 x  When N=0,

zA2 " . reduces to the simpler

ZAIPQ (IR]) F0 xp (R(x))h Q dx. (2.3.21)

t •/
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Techniques for evaluating ZAl PQ in closed form are detailed in

Appendix Al, techniques for evaluating ZA2NPQ are detailed in

Appendix A2.

A few comments regarding terminology are in order: The unsuper-

scripted Ai and Ri, being elements of the vectors [A] and [R] are

distinct from the superscripted variables defined in Section 1.4

(some of the unsuperscripted Ai and Ri are related to the superscripted

variables of Section 1.4 by equations 2.3.19). Furthermore, the

symbols [A] and CR], being aggregates of the quantities related

with, respectively, the two dimensional distance (,,) and the three

dimensional distance (r) between the receiver and the transmitter,

are vectors when the wire-to-wire interaction is under investigation.

These symbols represent two dimensional matrices when wire-to-

surface and surface-to-wire interactions are considered and three

dimensional matrices when surface-to-surface interactions are

considered.

In summary, the mutual impedance between two wire segments

with sinusoidal basis functions is composed of four impedance

quantities (equation 2.3.8) each of which can be written as linear

combinations of the impedance quantity Z0  (theorem 2.3.1,

WW
equations 2.3.12). The impedance qi:antity Z. can, in turn,

be written as a linear combination of the quantity ZA2NPQ for

various values of N, P and Q (equation 2.3.18). Whereas techniques

for evaluating AA2NPQ are examined in Appendix A2, it is noted here

I .... .
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that ZA2NPQ is a dimensionless quantity. Therefore, (from equat-

ion 2.3.18), Z has dimensions of (length) s+V+a+l which is

dimensionally consistent with equations 2.3.8 and 2.3.12. Further

details regarding the computation of wire-to-wire impedance are

treated in Appendix D.

I
.
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2.4 Coupling Between a Wire Segment and a Surface Segment

Revisited

From section 2.2,

zWS(n) = , P(y')zW(y' n ) dy', (2.4.1a)

z SW(y') = (n)z WW(n,y') dn (2.4.1b)

-X3

Replacing the dummy variable y' or n by -y' or -n in

the negative part of the integration domain,

- 4 f T (- _y,

z ZWW = ______ n) dy' (2.4.2a)-r=3 0' T( l T '

and

4
z SW(y ' ) = E £ (y', (-l)n) dn (2.4.2b)

i,' &=3 0
0

Using the substitutions y' = 9' y and n =Z y respectively,

the above equations may be rewritten as

1

WS 4 1 e eW(,TT
E E 1 ye zWW((I, y, n) dy (2.4.3a)

T=3 e=O T

0

and

i .J
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zSW(y )  x E 1)f1 Y, zWW (y' 1) Ly) dy (2.4.3b)
=3 f=0 0

Here the variable y is a dummy variable of integration and

is unrelated to the y used in the coordinate systems.

Equation 2.3.8 can be substituted into equations 2.4.3 to

give

4 1 4
zWSn) E . (-1)e,, E E bt zt ' r T,

T=3 e=0 T = _1!2 ,0,,2 t= 1

(2.4.4a)

and

SW 4 1 f 4 w ,

,) E E (-1) 9. E E Zt,
C=3 f=O x L'=fi'O,,2 tl tf

(2.4.4b)

where

1

zS (z''T n ) = ye zt (.,2y,n) dy (2.4.5a)

0
and

1

zs w (iffy,,) f Yf zW (9.,,y',ty) dy (2.4.5b)

0

.



2-18

It is to be noted that equations 2.4.5 represent definitions

of the quantities Zte and ZSW and that the factors (-1) T  andte tf

of equations 2.4.4 are absorbed in the dummy variables £
T

and z. for the purpose of this definition and the analysis that

follows.

Theorem 2.4.1a

Each of the component impedances Z 4S  through Z WScan be
le 4e

written as linear combinations of the impedance quantity

zw (', Z., nV, s, CL) where

1

WS ( ...... = ye Z '(91 dy (2.4.6a)
0

Proof

The proof constitutes finding the linear combinations of
ZWS
Ze ( ...... ) that give the component impedance in question

1

z WSf YeWW k,,,Y, ) dyle y
0

1 1-h
rye E (jk) + TY

g=O h=O
0

x (., 0, h, g-3)dy

1 1 1-h 1-h-h' h' h'
r Eg (2)- (R10 (R 11g=0 h=0O h'=0 T

xZWS .. 0,h,g-3)
O~e~h')(2.4.7aa)
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2eWSO (2.4 .7ab)

( S11-h 1-h *Yl-&-hl h' h
2e .. (AlY (ACY (T) zS . t2h=Oh -O 1 0(e+h') h,0)

I 1-h (2.4. 7 ac)

1S 1- 11-hyl1hh' 1' hz~~ ~ 4e(-.. E ag 1C 1-h ()(A1 (
g=O 00hz=O h=0 1011

x WS (.(-2), g+h, -1) (2.4.7ad)

Enr . of Proof

Theorem 2.4.1b

Each of the component impedances z Sf through Z SW can
if 4f

be written as linear combinations of the impedance quantity

OfW (2,y't oR v,,sc) where

Of

0

Proof

The proof constitutes finding the linear combinations of

.S ... ) that give the component impedance in question. SimilarOf

to equations 2.4.7a,
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SW(1 1 l-h 1-h l -h-h' C n h h'

g=0 h=0 h'=3 11

xzSW ( 0, h, g-3)0(f+h') (2.4.7ba)

zSW a _ SW 0,0 1
2f . O a S(2.4.7bb)

SW 1 1-h 1-h 1-h-h' h' h'
Z f - = (1) Z (A (A ) ( . (-2),h,0)

h=0 h'=0 0(f+h')

(2.4.7bc)

1 -q 1Z f (W E a g 9 (z o 0 -g -g • . (a z ) 9 , ( i) -h
g=0 Z9 g'=0 000 Z h0

1-h CAil -h-h' (Ai h' h' SWz (A 10) (Al11) (zZ0 (f+gl+h') ( "" ( - 2 )  g+h,-l)
h'=O0

(2.4. 7bd)

Equation 2.4.7.bd is dissimilar from 2.4 .7 ad because z
is a function of n but not of y'. This is easily seen by writing,

[+a
from equations 1.4.1 and 1.4.2, that

11l0 = 010 = Z00 + zn.

End of Proof

II
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Closed form solutions for Z WS are developed by substitutingOe

equation 2.3.18 into equation 2.4.6a.

1

zWS (..... f e£Wy ,v ,a dy

0
2 (-l)"' 1 5t-
z a0 1 a.(jk k. x
0= 2j sin kL0  i=O i

m E zim)w

m=O n=O v=O m ip -~ OeO

(2.4.8)

where

z S 1 ye (A) r ex v rl) [r110' n+p
QeQ 0 ~ 1 1 0  ez(j 1 0

0
z A2,v(s+m-n)(n+a) ([A],[RI) dy (2.4.9)

For the solution of Z S the argument of the exponentialOeO'

is first reduced to within nr/2 by writing
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1
0  exp(-jk r ) {A00' -x

1 Ivf ~,e [ A0 *'c+n+Pp jk(
0'y exp(-jk(r -r010

x zA2v s+m n) (n+ 
o) ([A], [R]) dy, 

(2.4.10)

expanding the exponential 
in the approximate series 

and then

~i 1

expanding the binomial 
(rob1 - rll )  to give

00 __e__ Olo[r n+D

Oe0 exp(-jkr 010) a00 r 10 X

5 il i I  il m
=0 ail (jk r0 1 0 ) E = m (-1)

11 l0 ml=0 jm~

ye r 1 1 0 ct+n+p+rnj 
d

Aly 010 ZA2v (s+m-n)(n+a)([A, ,[R) dy

(2.4.11)

0 00

I
!I
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The factor containing the integral is

1 f : (c,+n+p+m1 ) 1 v (n~a)

% s/i, R

y fe - 4I= y~ R _dxdy

Rooo\ (2.4. 12)

and thus can be written as ZB 2 (mn)(n+o)e(p+ml)([A],R])where the

elements Aij of the matrix [A] are given, for 0 < i,j < 2, by

I i + j 2
i,. -1 [ yo i j-(-i) (R..) A~y

A ij 00
0 otherwise (2.4.13a)

and the elements Rij of the matrix [R] are given by

) : {(-I)c (Z.)J R y  i + j < 2
R i j = "00

0 otherwise
(2.4.14a)

and where
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Zi~NQ ([AI,[RI) A MfEO Roj Yj S

1 2 N x 22Q
x f E E X1 ijJ ~ E Z x~ R. yj

Li=0 j=0 iO 0 .

dx dy

(2.4.15)

For N =0, Z B2NPQMS s implifies to

- BlM Z (RI) = - R Oj Yi) fx E E x R. . y j) Q
B1PMf tj=0 i=0 j=0

dx dy

(2.4.16)

The techniques for the calculation of Z and
BlPQMS

Z 2QM are detailed in Appendix B.1 and B.2 respectively.
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Combining 2.4.8 and 2.4.11,

WS 1 CY 2 (-1 as l
zOe 2jF 010-krlo IOO 010roo sin k X £a=1 a

E a. (jkt.) E E E

i= 1r00 1 p

(010 a ~ (jk' (2)' E 1 (-1)
i1 0 T £ m1=O r'

X Z B2v(s+m-n)(n+a)e(p+ml) ([A1,[RI)

(2.4. 17a)

The factor (jkr 1 )1 has been rewritten as (jk9,)1  (10)
010___)

T
in the above equation for two reasons: first, to make the expansion

in the y' direction appear to be symmetrical with the expansion in

the X direction by writing it in the form a a. (jkk () E a.i (jkQ 1 1;

second to anticipate a result to be derived in Appendix D whereby

the partial sum E E (1 i) (in) (im) (-1) M~ (l-(-1) i4 n+p)Z
m n p m1  m n p 132...

is found to be of the order ( iQ~) (.L."I)11, thus making all the
010o r 01 0

sums in the above expression relatively insensitive to geometry

where a large variation in (-) may be found.
r
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Similarly,

W 1 V 2 as s+
Zf -( exp(-jkrl0 0 ) As r1 (-

Of 30)10a=l si 9a

52iM i-rn[ fi fmj fi-M] (lm l +n+p 100ai(jk£a) E I m n p

i=0 m=0 n=0 p=O

=0~~~ ~ i ik Q) J]
ai0 a( '10 mi 1-1) ml ZB2v(s+m-n) (n+0)f p*il)

(2.4.17b)

where the elements A.. and R.. of the matrices [A],[R] are given1) 1J

for 0 = i,j < 2, by

( -i A£ ~ ) i 3 i + < 2

Ai. 00

otherwise

(2.4.13b)

I - a 1)a'1 ~i + j < 2
00

Rij

S0 otherwise
(2.4.14b)

.1i
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2.5 Coupling Between Two Surface Segments Revisited

From sections 2.1 and 2.4,

Z.4

3

4 1 f 1
E z (l)f9J z~ z1  ((-1)12 z) dz.

~= f0 (2.5.1)

The above equation has been derived similar to equation 2.4.3b.

The variable z = n-is a dummy variable of integration and

is unrelated to the z used in the coordinate system.

Equation 2.4.4a can be substituted into equation 2.5.1 to give

SS 4 1 f 4 1 e

=3 f=O T=3 e=O

t te b9. (2.5.2)

where

z SS (9.-,9.t,,. ) = f (2.5.3)

0

Ma
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Theorem 2.5.1

Each of the component impedances Zef through Z4ef can be

written as linear combinations of the impedance quantity

ZSef P ,s,a) where

1

OSS ( ...... e f f 'Z;,R z ' v ' s ' a) dz (2.5.4)ZOe f ( ... e

Proof

The proof constitutes finding the linear combinations of

ZfSS that give the component impedance in question

ss 1 1 1 -h 1-h h' h l-h-h' l -h h- ,h
Zlef = g=0 h=O 2 h'=O 110 h"=O )CO 101

*(£ ) h0 +h,) (f+h,,) (...O,h,g-3) (2.5.5a)

S2 f- a Z S ( ..0,0,-1) (2.5. 5b)Ze=az Zoef ..

= 1 i 1-h 1-h , h' h' 1-h-h' 1-h-b'-h" h" h"zf Z (A) ,^0n E ) (A n  (A ' '  (
h=O h1=O h"=O 101

x (f-h") (...(-2),h,O) (2.5.5c)
0(e+h') (f+h"
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1 1-g g' g,
= E-a9  E z0 0  ag'  (1)9

4f g' Zg1=0 0 o

11 1-h 1-h nh h' 1-h-h' ,1-h-h-h" h

h=h=O 110 T h"=0 100 101

Z SS ( +h") ( '(-2), g+h,-1) (2.5.5d)
x O(e+hs)(f+gI~N

End of Proof

Closed form solution forZ S S  is developed by substituting
Qe f

equation 2.4.17a into equation 2 5.4 to give

as s+1
SS 2 (-1) to 5 i I m i-m
Zoef( ...... Z .(jkt ) E E r (I)

a=l 2j sin a. a m=O n=O p=O

,(: i-m (_l)m (i-(_li~nk E ai  (jk) E ml (-1)
n if=0 1 M=0

x Z0 f0  (2.5.6)

1 Vn+p il

Zof = J z A00 rOlO exp (-jkr 0) (rOlO)

0

x Zs2v(g+m-n) (n+m)c(p+ml) ([A, [R])dz (2.5.7)

1I
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For the solution of the argument of the exponential is

Oef0e

first reduced to within L by writing

Z f0  = ex p(-jkr0 00  AA 000 v r 0a+i - n+P

1ro 00( 0 0  eXPJkfOCroo )x[ 1Z g exp

0 000 r°°°'

x ZB2v(s+m-n)(n+ot)e(p+ml) ([A], [R])dz (2.5.8)

and expanding the exponential in the approximate series and then

expanding the binomial i - L010 i  to give

zSf = exp(-jkr0 00 ){A00 1 v r+il t00 0 in+p

5 2i 2 m 2

i 2=0 a2 m 2 0 M2

1 f ~ r 1 ( a+n+p~4--ffl2
Sf ' 'i r000 B2v(s+m-n) (n+u)elp+m) ([A],[RJ)dz

(2.5.9)

-I
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The factor containing the integral is

v h(0+n+p+il+m)
1 f A002 } fy

1 e [R' 0 JI ('~ ) x (na

So 000 0omn (~ 1

1 0

JzYf (i 1 -m4-m 2) 1 e [R 1 ( ~ l

1 1000

-- 0 0

f-. . x dx dy dz ( 2.5.10 )

0 0 00 00

i and thus can be written as

;:. Z~v~sm-n) n+ )(pM+ml~~ 2 - ) 1[ I[R]

where the elements A of the three dimensional matrix [A]

y are given by

[10 000 0
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Ai )k ijk if i + j +k < 2
ijk Ay~ ijk

= 0, otherwise (2.5.11)

the elements of Rij k  of the three dimensional matrix [R] are

given by

R ~1k
Rik- i 'r ((-l)k ) i ( Z' )  (Z ) Rijk if i + j +k < 2

000

= 0 otherwise (2.5.12)

and where

1 2yH M 2 2 yj)zk S
zC2NPQMGH ([A], [R]) E () ROOkzk f0 Joj [ ik 1

k= j=0 k=0
0 0

1)h p 2 2 2 jz)'
xE E z Aii x yz k  xp  E E

i=0 j=0 k=0 j k i=O j=0 k=0 R x-J
0

dx dydz (2.5.13)

Techniques for the computation of ZC2NPQMSGH are treated in

Appendix C.2. Techniques for the computation of ZCIPQMSGH([R]),

being a special case of the above for N =0, are treated in

Appendix C.l.
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APPENDIX A

CLOSED FORM SOLUTION OF SOME SINGLE INTEGRALS

A.1 The Solution for ZAIPQ

Closed form solution for the integral

1

ZAlPQ ([R]) = f xp (R(x)) Q dx
0

where

R(x) = R + R x + R2
0 1 2

is derived here for various integer values of P and Q. In this

derivation, it is known that P > 0, R0 = and 4R 2 > R I

For Q = 0,
1

"AIP0 ([R]) - P+l (A.1.1)

APQ =ZAlP(Q-2) +1 A(P+(Q-2) 2 ZAl(P+2) (Q-2)

(A.1.2)

This equation is used as a recurrence relation for the cal-

culation of ZAIPQ for positive values of Q.



A- 2

For negative values of Q, a recursion relation to reduce the

value of P is derived first:

Integrating by parts,

Z lPQ - R Q 1 Q I xP+l R Q-1R+Rl)d
AlP P1 0 2(~l(R0 1+2~)d

_ ____ ,Q QR 1  QR 2
R___1 - z- z

-P+l 10 2(P+1) Al(P+l) (Q-2) (P+l) Al(P+2) (Q-2)

(A. 1.3)

Subtracting A.1l.3 from A.1.2 and rearranging gives

(2 + p+Q'T Al(P+2 ) (Q-2) +1 11

-(1 + 2(~)JR,2 lpl (Q-2P- (-2.4
'Al(P+1)(QA1P(A.1.4

Changing all P to P-2, Q to Q+2, for P+Q+l3 0,

X" R ]l (2P+Q)R
z - R_ z
AlPQ (P+Q+l)R 2  J 0  (P+Q+l)2R 2  Al(P-l)Q

(P-1) z
(P+Q+1)R 2  Al(P-2)Q (A. 1.5)

If P =1, and Q -2, this gives
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z R-+1 RA11Q (Q+2)R 2 0 - 2 R 2 AlOQ (A. 1. 6)

If P > 1 and Qyi -(P+1),

ZAlPQ (P+Q+l)R 2 UR1 ~ P ) 1 ZAl(P l)Q-

(P-i) Z Al(P-2)Q] (A. 1.7)

For P + Q + 1 =0, equation A.1.3 rewritten as

ZAlPQ R 2- (ZAl(P 2) (Q+2) - z -R) ZA1 P 1 Q

-1.8)

can be used recursively until P = 0 or 1. Z A1 _)a'-d z l(-1

are evaluated separately later in this Appendix.

Special Case

If R 2«< 1 the recursive relationships derived above accum-

ulate errors. For that case, equation A.1.7 rewritten as

z (Rl))Q+i - (P+ Q+2) R ZAlPQ P+i 1 Al(P+I)Q

(P+Q3'R2 zAl(P+2)Q/ (A. 1.9)

along with the approximation that for R 2«< 1, large p

zlQ (R(l)) (Q) (A.1.10)

is used for the evaluation of Z AlQfor all P and Q.

End of Special Case
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The base values to be used for recursion relations A.1.5.

through A.1.8. are given in tables of integrals (Gradshteyn and

Ryzhik , 1965) and are reproduced here.

4~O3  [(,+R R () - RJ if A #0

R__1_+__R_2 if A = 0
R1 (R +R -T2+l (A.1.11)

whe re

A =4R 2 - R12(A. 1.12)

2 tan -1 2R2+Rl tan-I1  i >
ZAl0 2) - tn ---- A~i >

R

z 1 1 R1
All(-2) -2R 2 ~ )-2 R 2 ZA10(2) (~.
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(R h h 1 + R + IRL2 R~) 2 211 if A #O

Z AO 1) - 1 R2 + T + R,

R hin R +12RifA (A.1.15)2R



A- 6

A.2 The Solution for ZA2p

The integral Z A2NPQ is evaluated here given that

N >-2, P>O0, Q -N-3 A 0 1> ,4 A1
2, 4R 2 >R 1

2

Z A2NPQ I [],[]2J AJj (x 2 R1  dx

0 x A2.2.R2

is reduced by using the recursion relations

A2NPQ A2(N-2)PQ +1A2(N-2) (P+l)Q +2 A2(N-2) (P+2)Q(A2)

and

ZA2NPQ ZA2NP(Q-2) 1 , A2N(P+l) (Q-2) +R2 ZA2N(P+2) (Q-2)

(A.2.3)

until N and Q are either zero or negative. If N =0,

ZA20OPQ Al1PO ([R]). (A.2.4)

If Q =0

Z A2NPO Z ZAlPN ([Al). (A.2.5)

If both N and Q are negative, a recursion relation on P

is derived by integrating A.2.1 by parts to give
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A2NPQ P+l Jo0

A 0R IQ + ROA 1N

2 (P+1) zA2(N-2) (P+1) (Q-2)

A R (N+Q) + 2 A R 2Q + 2R 0A2 N

2(P+l) ZA2(N-2) (P+2) (Q-2)

1 + 1 2 Qp+lA 2 R1N2R2 A1 Q(P+3) (Q-2)

A 2R 2 (N+Q) 
(A26

P+1 A2 (N-2) (P+4) (Q-2)(A2)

Equations A.2.2 and A.2.3 have been used in deriving the

above equation wherever necessary. Another equation is obtained

by applying equation A.2.3 to each of the terms on the right

side of equation A.2.2.

Z A2NPQ =A 0R0 Z A2(N-2)P(Q-2)

+ (A 1 R0 + R 1A 0) Z A2(N-2) (P+1) (Q-2)

+ (A 2 R + AIR, + A0R 2) ZA2(N-2) (P+2) (Q-2)

2 ( 2 1  1 1 2) ZA2(N-2) (P+3) (Q-2)

+ A 2R 2 Z A2(N-2) (P+4) (Q-2) (A.2.7)
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z ANQis eliminated from equation A.2.6 and A.2.7 to give

N + P+ Q+l1 A R Z _x -~ (A N R Q
P~l 2 2 A2 (N-2) (P+4) (()-2) - +f (

0

[+1 R12 2 ~ N 11+~i 2ARj +Q+l1 ZA2 (N-2) (P+3) (Q-2)

A AR 2 (P+Q+l) + A Rl(..N+P+.+l) +A R0 (N+P+l)~

ZA2 (N-2) (P-+2) (Q-2)

A~~ 0A RN2 0(PA (-2)Pl0-2 (-2)

AR- (AQh+l ) ~
A2 PQ j + l A R, 2N P 2 1

0 N-)P(NQ-2)

ZA2NPQl N+P+QPl A
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(AORl ,~ 2 + Ai=RO (+P-2))

N+P+Q+l Z A2N(P-3)Q

(P-3) A0R0
(M;P+ Q+l) A2RA A2N(P-4)Q (A.2.9)

This recursive relationship is used while P > 3 and

N+P+Q+l $ 0. Z for P =0,1,2 is evaluated later in this
A2NPQ

Appendix.

For N+P+Q+l = 0, equation A.2.7 rewritten as

lz - R, +AA2NPQ 22 A2(N+2) (P-4) (Q+2) tR2 A2N(P-l)Q

7 20  AR AA2 A

11 2 A A2N(P-2)Q A2R 2R

A R2 A2N(P-4)Q

can be used recursively until P is 0 or 1 or 2 or 3. However,

for the given range of values, this equation need never be

invoked.
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Special Case

IfA2 R2 << 1, equation A.2.9 is very error sensitive.

Equation A.2.8 rewritten by changing N to (N+2) and Q to (Q+2)

as

(Al) N+l (R1)) Q+l (N+P+Q+5) A2R 2
A2NPQ (P+l)A 0 R (P+l)A 0 R 0  A2N(P+4)Q

1 AIR 2  A2R ___

- - 1N+P+Q+4) + (NPl+
P+l A R0  00 R NP~+ ZA2N(P+3)Q

1 RA 2  1
- ~ 2(P+Q+3) + - l(N+P+=2+3) + (N+P+3)IZ
P+l R0A0 R0 A0 JA2N(P+2)Q

- I~;-(P+lQ2 + (1 (.+P+2) ZA2~+)
0 ~ J (A 2.11)1)

along with the approximation that for A R «< 1,

ZA(APl)) l (A2) (R(l) )h(Q+2) (A.2.12)

is used for the evaluation of ZA2P(. for all N, P, Q.

End of Special Case
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ZA2NPQ is evaluated for P =0,1,2 by writing

'-N Q(1  A 1 hN +R1Z AA2NP R + 2 X +X 2  x R - X+x 2J dx
A2NPQ 2 0 2 Xj 2  (A.2.13)

A_1  R1 R1
If 2 = -, the substitution t = 2x + 2 is used to give

A 2  R 2  2 sue ogv

N

z A 2 N R 2 Q t2 +4A 2-A 1 
2  t-~ R f t2 + R-2 dtZA2NPQ 2 N+P+Q+ I 2 22 " R2j  t 2 ..R21  dt

R2

A 2R2 h [fP Rf -'S-R R,
N+P tsJ k- ZA MN { 2 + R sA=j

(A. 2.14)

tN

where ZA3NsQ (t 0 tlAiA 2 ) = (t2 +A,) ts (t 2 +A 2  dt (A.2.15)"I t0

4A 2 - A1
2  4R2 -

and where A A = 2 R2 
2

I f Ll2 - ,2 the substitution
A2 R2

x = a + bB (t)

where B(t) = is the bilinear transformation on t and

Li~
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where

a-1 AJ 22 - 2 23=a+-+a a2 r+ -L
=A1R2 - A2RI ; b = +a - a2+__if +A 1  - a2+I + R

(A. 2.16)

The above substitution* gives

Noting that

t = B dx dt;(t+1) 2

The first factor becomes

(2b) N a+b+ AN

N A
(t+)a +

The second factor

( )p p i -S 'Is-p
t + B = (a+b)P s B - (t+l)

The third factor becomes

[R

(2b) hQ [a+b+-) Q

-- (t+1)Q -
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ZA2NPQ 2  R2  2A+ 1 W 21 Q~~

A4NPQ 0 1t1 -1 Q-2) B +

to (A.2.17)

Begnnngof ZFAlp evaluatio

z is evaluated using equation(A.2.14) i~f Li R

and equation (A.2.1.7) if ,or equation (A. 2.10) if P--.

End of Z A2 (1) P1) evaluation
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Beginning of Z A2 (-2 )P(l) eva luation

Beginning of Z A2 (-2)2 (_) evaluation

z AR-22(l x2  dx
A2 2 2 + l XX2 ~-+i X + X2

22 ~ 2 R 2  )k R

1 1~

A2 ZA2 (-2) 1 (-1) A 2 ZA2 (2) 0 (1)

or

E R]) - z A -20(1ZA2 (-2)2 (-1) A 2 Al (-1) A2 A(-2)1 (-1) A 2  2-0(l

End of Z A(22l evaluation

zA2(-2)P(-l) for P=0 or 1 is evaluated using equation (A.2.14) if

*Al R1  Al
-= - and (A.2.17) if A a

A2 R2 T2 R2

End of Z A(2P evaluation
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A.3 The Evaluation Procedure for Z A3NPQ

z = rt + ~1)N pt
zA3NPQ (t2  + A1 t ( dt

to

Beginning of ZA3 lPl evaluation

If m2 < a, we write

Z A3 (.l)P(1l) (tDt
1 ,a 1 ''2 ) = ZA3(..1 )P(..l) (toria 2, 1 )

From this point on it is assumed that 012 a

Let t = al tanO; 0 arctan 01i-t,; 0 =arctan a-

6 t (P) (tane se~ Clhde
1 1

zA3(-l)P(-1) f )h sec2 9 a in2  26);
ao (Ci't2i sit +Cos~e

at__ tan P ded

Letting A (0) V1 I -O Sin2e k 2 = 1 al k- a

ZAJ~)O~l (S** ir1 k) F F(80 k)~ (G &R 2.584.1)
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ZA3(i1)1(1l) =a2) 2k A~~~~ FO:-'t,(6o)jk (G &R 2.584.73)

2 Al 0 +-~( 1 -n (e 1 )+k- A(0 0 )-k

A3(1)2-1 A(8,)tane,-E(e,.,k) -A(A)tanf
a2 k-

+ E(0 0 Fk)

(G &R 2. 584. 90)

= ~ ~ ((21) ( tane, - ( 0) tano0

-E(e 1 k) + E(e0,k)

Where F(e,k) and E(O,k) are elliptic integrals.

When al = a2, these simplify to

z A 3 (I)O(-l) = 1 6 1e- 0)

t2 + a

zA3(-l)1(-l) =19t02 + 1

Z A3 (-1)2 (-1) = (t i- t0) - a ZA 3 (-1)0 (-1)

End of Z A3 (_)P(_) Evaluation
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Beginning of Z A3 (-2)P(1) Evaluation

z A3 (-2 )P(1l) is evaluated using the substitution t =a 2  tane

zA 3 2 pl = a2P j,81 cos6 tan pe de
A3(-)P(-) f al COS 26 + a2 sin 2e

where 6 0 = arctan M2  t 0  61 = arctan a2 - t 1

For P =0, the substitution u =sine gives

z A(-)0(l)= ZA3 (sine0, sine1, a2 -al1  al

where

z A3 (U0, Ulf b, a) =du2
a + bu2u0

-:-arctan1( ), u1  arctn!nUI if ab, > 0

aa

1 1 - 0  if b = 0

1 u1 -0 I

- 1 ln a +-bu 1  a (-ab) U 0I if ab <0
2(-ab~jl a + (-ab) U 0  a -(-ab)tulJ

For P =1, the substitution u =cos3 gives

7I---
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z - C1 ICoseo, co e t Sl-2 I

End of Z EvlatoA3(-2)P(_1) Eut
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A.4 The Evaluation Procedure for ZA4P

A procedure for evaluating

t

Z A4NOQ z = A3NOQ( ..

If P=1,

zA4N1Q zA3NOQ +zA3NlQ( ..

z A4NP( . for negative values of P is invoked only when

N =-l, Q =-l. In that case, if a2 < al, we write

Z A4 (-l)P(-l) (t01t1t 11czI2) = Z A4 (-l)P(-l) (tO'tl'cz21 ct1).

From this point on it is assumed that M2 1 l Let

_ 1 tanO; -0 01 ae0t1=l aOl

ZA4(l)P6l =1 1 J (+a 1 h tane)p de

a2 tlil sin2 811

a2)
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Letting A (e) rl $-k 2 Sin26O where k2=1--al k,2-c~l
a2  a2

we write

ZA4 (-l)P(-l) -a fP(~ae~d

130

where c =a

.7 Z~A4 (-1) (-1)(-1) = IIY2 [~ 1 k)-Fei)

+ (i+ 1  2  (e8 v(l+al) ,k) - 7r(6 0 -1j ik)J

-Vl~l - 1+ia2)L (1+1)A (61)

a 2  aI

(1+ - (1 +- A ( 0)al

L 1- + 01- (
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Also from tables of integrals, (G &R 2.591.2)

ala2 (c+tan 01) cos2
G 1  (c+tan0 ) cos

2e (l+cl)(l+a2)

(l+-a)(l+ 2) a 1 + 21 + ZA4 (-) (-1) (-1) Y 2

+ tane1 A (01) - tan6o A(00 )

- F(0 ,k) +-F (e0 ,k)
OL2 a2

- E(e 1 ,k) + E(o0,k) ]

End of ZA4 (l) (-2) (-1) Evaluation

The elliptic integrals used in this evaluation are

computed using standard routines from the SSP library.
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A.5 The Solution For Z ( .)M

A5NA5NQMS

(A. 5.1)

is invoked only for N=O or 2. If N=O,

f zA50QMS z ZA2QMS ( (B], CC]). (A.5.2)

ZA52QMS i=O AiZA2Q(M+i)S ([I][] A5J
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APPENDIX B

CLOSED FORM SOLUTION FOR SOME DOUBLE INTEGRALS ARISING IN

THE COMPUTATION OF MUTUAL IMIPEDAN4CE QUANTITIES

Notation:

R = R(x,y) = R (y) = R (x) 2 2- R.xy i=Q j=0 13

Writing R(x,y), as the trinomial R.. (x) implies the form
y

Writing R(x,y) as the trinomial R x(y) implies the form

[R]y is the vector ((Roo +R0 1 y±R 02 y2) (R 1 0 +IRlly) R 20)

[R XI is the vector ((R 0 0 + R1 0x+R 2 0 x
2)(R 0 1 +R1 1x) R 02)

Similar notation is used with A(x,y). Furthermore, (Rx=OI rep-

rc.,ents thle vector (R 00R 0 1 R 2whereas [R _O represents the

vector (R0  R1  R2 ) etc. The trinomial Rx=o(y) is written

R 0 (y) for brevity.

I 4
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B.1 The Computation of Z BlPQMS

By definition,

11

Z BlPQMS fJy0 I.( 0 (y)) JS x P(R(x,y))W dx dy
0 0

(B.1.1)

Writing (R) n = Rn-2 R2 it is easily proved that

2 2-i
B1QM i 0 j-0 R~ ZB(P+i) (Q-2) (M+j)S(B12

and

2
Z B =QM E R 0  ZBl PQ (M+j) (S-2) (B.13)

B1PQMS j=0

Equation B.1.2 is used recursively until Q is zero or

negative. Equation B.1.3 is used recursively until S is zero

or -1. A recursion relation for reducing the value of M and

P is derived as follows:

Integrating the inner integral in equation B.1.1 by parts,

1

ZlQs 1 P+l ~ M (R0(y)) S (Ry(x)) Q dy ]

1 2 2-i

P+l i IRj ZB1(P+i) (Q-2)(M+j)S (B.1.4)i=0 j=0
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Subtracting equation B.1.2 from B.1.4

1

0 xP lZ A2QMS ([Ry(x),[R (O)]) l x=O

2 2-i

i=O j=O

In equation B.l.5, the sum of the subscripts in the P and

M positions of Zl is (P +M+i +j). This is highest

when i-.-j = 2. Separating all terms that meet this criterion

2

i=O

1 1-i

-(P+ iQ+l) R i. ZBl (P+i) (Q- 2) (M+ j) S
i=0 j=O 1

or changing P to P-2, Q to Q+2,

2
Z (P+ iQ+i-l) Ri( 2 -i) z B(P(2-i))Q(M+2-i)S

i=0

1

-x- A2(Q+2)MS(.)I_

1 1-i
E E (P+ iQ+i-1) R..j ZB1P(-)QwS (B.1.6)

i=O j=01) 1P(i)Q.ij
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The implications of this recurrence relation are shown in

Figure B.1.1. For a given value of Q and S, different

ZBlPQMS values map onto a grid in the P-M plane. The points

of the grid with two circles around them (A and G) are the given

values of P0 and M0. When P0 # 1 (Point A) equation B.1.6

gives a linear combination of Points A, B and C in terms of D,

E and F. When P0 = 1 (Point G), a linear combination of

points G and H is given in terms of Point J. In the grid in

the P-M plane as shown in Figure B.1.2, it is assumed that all

ZBl for which P + M < n - 1 are known. Let Zpn A z.... P_ BlPQ~n-pSt ,

where all Z (P = 0 to n) are to be determined. The application

of equation B.1.6 for all Zpn (P = 1 to n) gives n linear

equations to be solved simultaneously. Another equation is

generated as follows:

Integrating B.1.1 by parts,

~1
z-+ yM (RO(y)) M lAlP ([Rx(y)]) 1

2 2-i
- £ QijRi. Z~iPi,EiE=j R0 ij ZBl(P+i) (Q-2)(M+j)Si =0 j =0

2Z hSj R0  (B.1.7)

j=0 S j ZBlPQ(M+j) (S-2)

, I -
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0
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Substituting equation B.1.2 into the last term and equation

B.1.3 into the second term, eguation B.1.7 becomes

z 1PQMS M+l (R0 (y)) 5 ZlP ([Rx(y)I)]

1 2 2-j 2
M- l E E(E jQ + kS) R.. RO

Mlj=O i=O k=O .Rk

*x Z Bl(P+i) (0-2) (M.4j+k) (S-2) (B.1.8)

Combining equations B.1.,2 and B.1.3, another equation for

z BPM is obtained.

2 2-j 2
zB1PQMS E ij Ok ZBl(P+i) (Q-2) (M+j+k) (5-2) (B.1.9)

j=O i=O k=0

Subtracting B.1.9 from B.1.8 and multiplying throughout by (M+l),

1

2 2-j 2

j=O i=O k=O ~ ~ZlPi 02 Mjk S2

(B.1.10)

IM / .3



In equation B. 1.10, the sum of the subscripts in the P and M

positions Z is (P+M+i+j+k). This is highest when k=2

and i + j = 2. Separating all terms that meet this criterion,

2
Z ( jQ +M +1 +S) R Z

j=0 (2-j) j 02 ZB1(P + 2-j) (Q -2) (M + 2+j) (S -2)

1

N-i-i (R 0 y) ZAlPQ (- ly=O

2 2-j min(3-i-j,2)
-E E E ( jQ + M +I+ kS Rj R O
j=0 i=0 k=Oi O

x Z Bl (P + i) (Q - 2)(M+j+k) (s - 2)

or changing Q to Q-t+2, M to M -4, S to S +2,

2
E (Q + M +S- 1+ij) R (2 -j)j R 0 2 ZB1 (P+2 -jQ(M2+ ) S

j=O

.M-3 (R 0 y) (S+ 2) Z Al(P) (Q+2) ]- 1=

2 2-j min(3-i-j,2)
E- E ( jQ +M +kkS -3+ j +k) R.. O

j=O i=O k=O 3

z BI(P +i) Q(M -4+ j +k) S
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The implications of this recursion relation are shown in

Figure B.1.3. For a given value of Q and S, different ZBIPQMS

values map onto a grid in the PM plane. The point with the

circle on it is a given value of P0 and M0. The left-hand

side of equation B.1.11 is a linear combination of the points in the

shading. The right-hand side maps the points in the dashed

area. Thus equation B.l.11 calculates a linear combination
of the dotted Z quantities in terms of the quantities marked

B.....

with dashes (which have M ranging from M0 -4 to M0  1,

P from P0 to P0 + 2). It is also to be noted that the left-

most three points correspond to j =k =0. Therefore, the

multiplier for those points in equation B.ll is (M-3)Ri R00.

Thus when M0 =3, only the terms involving M from 0 to 2 are

needed for the computation of the weighted sum of the dotted

points. For the calculation of Zpn, equation B.1.11 gives

n-1 linear equations, yielding a total of 2 n- 1 equations

(n linear equations from B.1.6) to solve for the n +1 values

of Z The n + 1 equations are chosen using n equations

resulting from letting P=n down to 1 (M = n - P) in equation

B.1.6 and 1 equation resulting from letting M = n (P= 0) in

equation B.1.11. This set has been chosen so as to maximize

the use of equation B.1.6 which is simpler in form.

_ _ _ _ _ _ _ _ _ _ _ _ _

_ o
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The application of equation B.1.11 for P=G, M=n, gives

(n+S-l) R2 0 R0 2 2 +(n+S-l+ (Q+2)) R R0 2 Zin

+ (n + -+ (Q+2)) R0 2 R0 2 Zn Sin (B.1.12a)

where 1

S n  yn-3 (R0 (y)) (S+2) ZAlO(Q+2) ([R1y)J)
1y=0

2 2-j min(3-i-j,2)
- z x ( jQ +n +%kS -3 + j +k) R R

j=O i=O k=ii Ok

ZBl(+i)(n-4+j +k) S (B.i.13a)

The application of equation B.I.6 for P 1 and 2 (M=n-1 and

n- 2 respectively) gives

h (Q+2) R Z + (Q+2) R Z S (B..12b)

1i On 20 in 2n (J..b

R Z0 zOn + (l+ (Q+2)) R Zln +(1+ (Q+2)) R20 Z2n= S3n(B.1.12c)

where

S S2n = ZA2 (0+2) (n-1) S ([Ry (1)]1, [Ry (0)] - ZAl(n-1 ) (Q+S+2') ([Ry(0)1)

1 :1-i
- x E i (0+2)R Z

i=o j=0 Rij ZBl(I-( 2-i))Q(n-l+j)S (B.l.13b)

I

tI
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and where

S = ZA2IQ+2)in2)s ([R(l)] , [Ry(0)])

1 1-i
E Z (I + i(Q+2)) Rij ZBI iQ(n+j-2)S (B.l.13c)

i=0 j=0E

Equations B.1.12 are solved simultaneously to give

ZOn, Zln and 2n. It is seen that the three equations are singular

if Q =-2 in which case ZOn and Zln are computed numerically and

Z is computed using equation B.l.12a. Once Z Z and Z2n On' Zn 2n
are known, all other ZPn are computed by writing equation B.1.6

in the form

ZPn = (P+Q+I)R2 0  ZA2(Q+2)Ms ([Ry(1)] [Ry (0)1)

- (P+ Q) RI Z(p 1 ) - (P- l) R0 2 Z(p 2 )

1 I-i

E1-i (P + i (Q+2) -1) R.
i- (2 )ij ZBI(P-(2-i))Q(n-P+j)Si=0 j=0

(B.1.14)

Figure B.I.4 summarizes the calculation strategy.

A recursion relation that is simpler than equation B.1.11

can be derived when S =O. Under this condition the last term in

equation B.1.7 vanishes and, subtracting B.I.2 from B.1.7,
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0 = M+1 z AlPQ([R x(Y)1 ]=
2 2-i

- E E ( jQ+ M+l1) R i ZBl (P+i) (Q-2 )(M+j) 0 (B.1.15)
i=O j=0

Separating all terms for which i + j = 2,

E ( i+M~l) (2 -j.)j ZBl(P+2-j) (Q-2) (M+j)o
j=O

1

= M+. Z AlPQ ([Rxy')3

- £ ( jQ+ M+ 1) R i ZBl(P+i) (Q-2) (M+j)0
i=0 j=O

or, replacing M by M-2, 0 by Q+2 throughout,

2

j= ( QMlii (2 -j)j ZB1(P+2-j)Q(M-(2-j))o

1

- M-l z AlP(Q+2) ([R x(Y)I) 1
1y=O

- j (Q+ 2) +M-l1) R ijZB1PiQM(- O (..6
i=O j=O iB(0)(-(-)0 (~.6
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Using B.1.6 and B.1.16, all points on the P-M grid except

P=M=0 become candidates for recursion. When n=l, M=n, P=0,

equation B.1.16 gives

(Q+2) R 1 1 Z10+ (Q+2) R 0 2 Z01l Z AlP(Q+2 ) ([R X(1)

Z AlP(Q+2) ([Rx(o) ]) - (Q+2) R 0 1 Z BlOQOO (B.1.17)

which is solved simultaneously with equation B.l.12b to Qive Z0

and Z10. When n=2, equation B.l.16 for M=2, P=O becomes

R 2 0 Z 2 0 + (1 + (Q+2)) R 11Z 11+ (1+(Q+2)) R 0 2 Z 02

1 1-i
j z (Q+2)+l1) R..j Zlij (B.1.18)

i=O j=O )B ii

Figure B.1.5 shows the P-M grid and outlines the stragety

for calculating all Z BlPQMO-

The numerical calculations are performed using a 6 rnoint

Gaussian integration (Abramowitz and Stegan, formulae

25.4. 30) whereby
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ff(y) dy- 6
i=l ~ 2

where w.i and x. are given by (Abramowitz and Stegun, Table 25.4)

for various values of n. Thus,

ZBLQM 1- 6 .(JM (S/2 ( R
Z lPMS 2 1 1i (RO(yi)) Z AlPO L[y-yJl

where yi (xi+l). (~.9
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B.2 Closed Form Solution of ZB2 ( .).

By definition,

ZB2NPQMS f~ "" J R,(Y Sf(A(X,y)) NXP R(,y dx dy
0 0 (B.2.1)

Writing (.)f n (*2 (.)n-2 it is easy to see that

2 2-i

ZB2NPQMS Z= r R i B2N(P+i) (Q-2) (M+j)S (B.2.2)

2

ZB2NPQMS Z Oj 0 B2NPQ(M+j) (S-2)(B23

2 2-i
Z B2PM Z A..jZB2N2(~)(~) (B.2.4)

B2NPQMS i=0 j=0 1 B(N)PiQM+S

Equation B.2.2 is used until Q is 0 or negative. Equation

B.2.3 is used until S is 0 or -1. Separate recursion relations

are derived for reducing the value of (M+P) depending on

whether S and Q are zero.

Integrating the inner integral in Equation B.2.1 by parts

ZB1P M P Pl l mf M (Rd
Z x y ( y) ) (A' y)) (R, y)

B2NQM z~ 1 0i A. B(..) PiQMj
i=0 j= 1J

2 2-i

P+1 = j= i j ZB2(N-(P+i) Q (M4j) S5B25j1 1=0 j=0 1)ZBNPi ( 2 Mj

'41
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Applying equation B.2.2 to the second term and B.2.4 to the

last term in equation B.2.5 and then subtracting the combination

of equations B.2.2 and B.2.4 from it

2 2-i 2 2-k
r (hiN+P+l+hkQ) A i R k

i=O j=O k=O Z=O

x ZB2 (N-.2) (P+i+k) (Q-2) (M+j+X) S

The sum of the subscripts in the P and M positions is

(i +j +k+t +P+M). This is highest when i+j =2; k+t=2.

Separating all terms that meet this criterion,

2 2

i= k= ( i + kQ i(2-i) Rk(2-k)ZB2(N-2) (P+i-+k) (Q-2)gMH44Ni4*))s,

x ,P+l ZANM (...)

2 2-i min(3-i-j,2) min(3-i-j-k,2-k)
E E E E si + P+l + Q A.

i=O j=O k=O L1)~jP

x Z -..2) (P+i+k) (Q-2) (M+j+t) S

or, replacing N by N+2, P by P-4, Q by Q+2, throughout,
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2 2
F E ( i(N+2)+P-3+Ak(Q+2)) Ai( 2 -i)k( 2 -k) B2N(P-(4-i-k))Q(M+4-i-k)S

i=O k=0

A5(N+2) ,Q+2)MS ('x=(

2 2-i nin(3-i-j,2) nlin(3-i-j-k,2-k)
-E E E ( i(N+2)+P-3+ k(Q+2)) A ijR k9

i=0 j=0 k=O t=0

x ZB2N(P_(4_ik))Q(M+j+£)S (B.2.6

The recursion implications of equation B.2.6 are shown in

Figure B.2.1. In the P-M grid as shown in Figure B.2.2, it

is assumed that all Z B2 "... " for which P +M < n-1 are known. Let

=  nhere all Z are to be determined. The
4P n ZB2NPQ(n-P)S whr all
application of equation B.2.6 for all ZPn (P=3 to n) gives

(n-2) equations to be solved simultaneously. If, as is

4 sometimes the case, Z(~pln,, , Z(p_2 )n, Z (P-3)n and Z

are known, equation B.2.6 written in the form

1

(N+P+Q+l) A2 0 R2 0 ZB N P QMS  xP - 3 ZA5(N+2)(Q+2)MS (
x=0

2 2-i min (3-i, 2) 2-k
- E z Z (ki(N+2)+P-3+hk(0+2)) Aij R

i=0 j=0 k= 1)0

x ZB2N(P-(4-i-k))Q(M+j+1) S

is useful for finding B2NPQMS. (B.2.7)
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If Q = 0, following a procedure similar to that used in the devel-

opment of equation B.l.6, an equation simpler than B.2.6 is

derived:

2 E(fN+2) i+P-l) Ai (2-i) ZB2N (p_(2_i)) 0(M+2_i) S

i=0

xP-1 ZA2(+2)s ([A], [R0])

1 1-i

E (i(N+2)i+P-l)Ai Z
i=0 j=0 i B2N(P-(2-i))0(M+j)S

(B.2.8)

Other equations are generated depending on whether Q and

S are zero by integrating the outer integral in equation

B.2.1 by parts

I
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ZB2NPQM4S - {M+ ( 0 y) SZA2NPQ ([A] [R lJ)

2 2-i

Z= E= 1N j i B2(N-2)(P+i)Q(M+j)S

2 2-i
Z- hz R iR..ZBNPi(Q2 MjS

i=O j=O )BNPi Q2 Mj

E 2 h Si R0. zB2NPQ(M+)(s2)I (B.2.9)

j=0

*If both Q and S are zero, equation B.2.9 reduces to

Z B2NPOMO = 1 -M+1 Z A2NPO .. ~

- 2 2-i

M+1 Z Z )Nj A i ZB2(N-2) (P+i)O(M+j)Oi=0 j=0
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Comparing with equation B.2.4,

0 =yM+l z1A2NPO 1 y=O

2 2-j
- E Z (M+1 +N 3 ) Aij ZB2(N2) (P+i) 0(M+j) 0

j=0 i=0

or separating the terms for which i + j = 2 while replacing N

by N +2, M by M-2 throughout

2
E (M-1 + (N+2) j) A(2j)iZB2N(P+2_1)O(M_(2j))o
j=0

M- 1 1

= y fl* 1 zA2(N+2)P (-.) 3
yI=0

1 i-9
-E E (M - 1+ (N+2) j) A.- 0 i0 ((ij ZB2N(P+i)O(M-(2-j))0j=0 i=0

(B.2.10)

Figure B.2.3 shows the recursion formula pictorially.

For S =0, Q#0, equation B.2.9 becomes, by application of

equation B.2.2 to the second term and equation B.2.4 to the

third term,

I iD
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ZB2NPQMO 0M+ z YA2NPQ([Y=RYOI

1~ 2 2-i 2 2-k
E E E E (hNj +hQP) Aij Rkt,

Ml i=O j=O k=O X-0

Z B2 (N -2) (P+i +k) (0- 2) (M+ j+ Z) 0 (B.2.11)

* Combining equations B.2.2 and B.2.4 and subtracting the

result from the above,

o .. M+1 z A2NPQ **

2 2-i 2 2-k
-E E z E (hN j+ hQt + M +1) Ai j R k

1 i=0 j=O k=O L0O

Z B2(N..2) (P+i+k) (Q-2) (M+ji-L) 0

or
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0 y~ Z A2NpQ(..-) ]__O
2 2-j 2 2-t.
E~ E E E ( Nj + hQ1 +M+l1) A..

j=O i=O R.=O k=O 1)

Z B2(N-.2) (P+i+k) (Q-2) (M+j+t) 0 (B.2.12)

Separating all terms for which i + j + k +.t =4,

2 2
E E ( Nj + Qt. + M+l) A ( 2-j) jR(2£)ZB 2 (N-2 ) (P+4-j-£) (0-2) (M+j+Z) 0

j=0 Z=O

Sz A211PQ(~

2 2-j min(3-i-j,2) min(3-i-j,2)-.
- E E ( Nj + hQX+ Ml) A~Rk
j=0 i=0 1=0 k=O i k

x z B 2 (N..-2) (P+ i+k) (Q- 2) (M+ j+Z) a

or replacing N by N+2, Q by Q+2, M by M-4 throughout,
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2 2 '
E N+2)j+ (Q +2)L(- ) A

j=0 =O (-j)j R(2-t) t. B2N(P+4-j-9.)Q04-(4-j-Ij)O

ym 3 z A2 (N+2)P (+2) ~ y=O

2 2-j min(3-i-j,2) min(3-i-j,2)-t
z E E z(N+2j + h(Q+2) L+ M-3) A .. N

j=0 i=0 k=0k3

x B2N(P+i+k)Q(M(4-j-))o (B.2.13)

Figure B.2.4 shows this relation pictorially.

For Q =0, SjiO, combining equations B.2.3 and B.2.4 and

subtracting the result from equation B.2.9 after application of

equation B.2.3 to the second term and equation B.2.4 to the

last term,

1

0= YM~1 (R(y)) hS ZMN . y

2 2-j 2
- E E A.. R O (h NJ +M+l+hSm)
j=O i=0 M=O ')I

ZB2(N-2) (P+i)O(M+j+m) (S-2) (B.2.14)
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separating all terms for which i + j + m = 4,

2

E =0 j+++S (2-j) j R02 ZB2(N-2) (P+2-j) 0(M+2+j) (S-2)

YMi- (R0 y)) Ss Z AlNP (

2 2-j min(3-i-j,2)
Ez E ( Nj+M+l+ Sm) Aj Ro

j=O i=0 M=0 G

x Z B2(N-.2) (P+i)O0 (M+j+i) (S-2)

or replacing N by N +2, M by M- 4, S by S +2 throughout,

2

Z ((N+2) j + m-1+S) A(2 -j.) j R 0 2 ZB2N(P+2j)o(m-(2-j))s
j =0

- M-3 (R (y)) (+) z(N 2 p()I

2 2-j min(3-i-j,2)
.-Z E E (S (N+2) j +M- 3+ S(S+2) m)A jR O
j=0 i=0 M=0 OG

x Z B2N(P+i)o(M(4j-))S (B.2. 15)

Figure B.2.5 shows this relation pictorially.
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If both 0and S are non-zero, subtracting the combination

of equations B.2.2, B.2.3 and B.2.4 from equation B.2.9 after

applying equations B.2.2 and B.2.3 on the second, equations B.2.3

and B.2.4 on the third and equations B.2.4 and B.2.2 on

the last terms,

0 = yM+i (R oy)) hS ZA2NPQ (AY] ['y, )y~

2 2-j 2 2-X 1
Z- E Z E ZI Nj + QR.+ M+1 + SmI A. Rk, Rom

j=O i=0 L=0 k=0 m=OL -j 1

x (N-2) (P+i+k) (Q-2) (M+j+l+m) (5-2) (B.2.16)

Replacing N by N +2, Q by Q +2, M by M-6, S by S5+2

throughout while separating the terms for which i + j + k +92. + m = 6,

equation B.2.16 becomes,

Z Z =0 L(N+ 2 ) j+ h(0+2 ) + M -3+ S] A 2j R (2 -2. )2 R02

x' Z B2N(P+4i-jt)Q(M-(4-j-))S

= ym-5 (Ro(y)) (S+2) 112N+)(Q2

y=O

2 2-j 2 2-t. min(5-i-j-k-Zf2)
-E E E E E= [h (N+2) j + h(Q+ 2) +M- 5+(S +2) Mj
j=O i=0 Z=O k=O o

x A. Rk L Rom ZB2N(P+i+k)Q(M-(6-ji2.-m))S (B.2.17)
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Figure B.2.6 shows this relation.

The case where Q = S = 0 occurs whenever the far-field

approximation is being considered. Calculation strategies are

developed here for the Q = S = 0 and the general case Q# 0,

S 0. The other two cases Q =0, S 0 and Q #0, S =0 occur

infrequently enough to justify not programming them as special

cases but rather to use the general, even when they occur.

Figure B.2.7 summarizes the calculation strategy for calculating

Z The relation
B2NPnMS*

1 6 MS/2] [ y yi
ZB2NPQMS - Z w i (yi) (R0 (y)) ZA2NP Q ([Ay=y , )

2il

(B.2.18)
1

is used for numerical integration. Here, Yi = 1(xi+l) and w

and x. are given by Abramowitz and Stegun (Table 25.4, n=6).1
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F P=For 

P=t to 
2,

twrite 

equation 
B.2.18 

ifpossible, solve numerically
otherwise.

For P=0 write For P=3 to 8, write
equation B.2.10 equation B.2.6

if possible,
solve numerically

otherwise.

For P=I and 2,] Solve for

write equation B.2.8Zpn (P= to 8)

Il
FIGRE2.8.

Solve for ofFor higher values;!Zn (P=0 to 2),[ of P, use

~~~~from the equations euto ..

set up above

For higher values
of P, use

equation B.2.8

~FIGURE B.2.7
- Calculation of 4Z 2N-AM$ for various values of

P and H (and given values of N, Q and S)

- - -III - Il . .. . . . I J . . . .. . . . . * .k j| II
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APPENDIX C

CLOSED FORM SOLUTION FOR SOME TRIPLE INTEGRALS ARISING IN

THE COMPUTATION OF MUTUAL IMPEDANCE QUANTITIES

Notation:

R = R(x,y,z) = Rx (Y,Z) = Ry (Z,X) = R z (x,y) = R xy(Z)

2 2-i 2-i-j i j k

=Ryz (x) = R zx(y) = _ E E Ri k x .k
i=0 j=0 k=0

Writing Rx (y,z) implies the form

2 2- [2j-k k
Rx (y,z) = E E I- E Rijk X] yJz

j=0 k=0 Li=0

i.e., the variable appearing in the subscript is the most suppressed.

This definition is consistent with the statement that [R] is the

matrix

2[ 000 + R100 x + R200x  R001 + R101 R002

r R 00+ R 10x R Ol0

[ R 020 0 0 I
Similar notation applies to the subscripts y and z. Consistent

with this notation,

f
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2 2-j j k
R 0 (YZ) F E R jk Y

j0 k=O

and Ix0] represents the matrix

R000 R001 R002

R0 1 0  ROl 0

R 0 0

Writing R as R (x) implies the form
yz

i2 [2-i 2-i-3 • yzkl i

Ryz (x) E E E R ijk Y X
i0 j=0 k=0

and is consistent with the statement that [Ry] is the vector

2 2-j j k

j=0 k=0

1 1- kE R jk

j=0 k=0 j
R 200

Consistent with the above definitions, [R(y=O) zO implies the

vector

R000

R100

R 200
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C-1 The Computation Of ZC1PQMSGH

By definition,

z CIQMSG ZG(R 00 (Z)) H2 y M(R 0 (y,Z))S/

If Q/2(Cl)

0

n n-2 2
Writing () =() () it is easily proved that

2 2-i 2-i-j
z IQSH= E I j ZCJip.i (Q- 2 ) (M+j)S(G+k)H,

0= j=0 k=O Rik ±+.

2 2-j (C.1.2)

zC1PQMSGH = 0 E K Ojk ZClPQ(M+j) (S-2) (G+k)H (Cl)

and
2

zClPQMSGH =OE 00k zClPQMS(G+11(H-2)(Cl4

Equations C.1.2 through C.1.4 are used as recursion relations for

desired values of Q, S and H in terms of (smaller) given values of

Q, S and H. Relations for giving ZCl f.. or desired values of P, M

and G in terms of given (smaller) values of P,.M and G are derived

as follows:
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Integrating the integral on x by parts

1 1 G P/2  1
ZC1PQMSGH +I Z (R ) f

0 0

(R(y,z))S/ 2 ((0/2 j 1
x-o

1 2 2-i 2-i-j i
P+l E E 2 iQRijk ZC1(P+i)(Q-2)(M+j)S(G+k)H

i=o j=o k=O

(C.1.5)

Comparing with equation C.1.2,

0 P + I 1
-- x ZB2QMSGH ( Rx, UR0J) I i

X=0

2 2-i 2-i-j
- E( iQ +P+I)R ijk ZCl(P+i ) (Q-2) (M+j)S(G+k)H

i=0 j=0 k=0

(C.1.6)

Separating the terms for which i+j+k = 2, which changing P to P-2,

Q to Q+2

'I
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2 2-i1
E 2-i i(Q+2)+P-) Rij(2-i-j) ZCI(P+i-2)Q(M+j)S(G+2-i-j)Hi=0 j=0

P-I 1
x ZB2(Q+2)MSGH ('') x0

1 1-i l-i-j 1
- ( i(Q+2)+P-l) Rijk

i=O j=O k=O

x ZCI(P+i-2)Q(M+j)S(G+k)H (C.1.7)

The implications of this recurrence relation are shown in

Figure C.1.1. For a given value of Q,S and H, different ZCPQMSGH

values map onto a grid in the P-M-G coordinate system. The points

of the grid with two circles around them (A and L) are the given

values of PM 0 and G 0 . When P0 #, (Point A) equation C.1.7 gives a

linear combination of points A through F in terms of points G, H, J and K.

When P0 =1 (Point L), a linear combination of points L, M and N is given

in terms of point P. A plane of constant P+M+G is shown in Figure C.1.2

Recursion relation C.1.7 can be applied to all points for which

P>l. n+l more equations must be generated (for P=O) in order that

all points in this plane may be solved. This is done by integrating

the integral on y by parts to give

LL!
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ZC1PMSGH - yM+l 1 z G (R0 (Z))H/2 (R0 (y,z)) S/2Z QSH M+ 1 f 000

1P1 2 2-i 2-i-jj x P (R(x,y,Z)) Q/ 2 dxdz] 1  2 2- jR
_=-i-0_ k Jik'+)(Q-2) (M+j)s

3- 0 =0 W -D(S k ) H
2 2-j 1
E=0 E Sj RUjk ZClPQ(M+j) (S-2) (G+k)Hj =0 k=0

(C.1.8)

Substituting equation C.1.3 into the second term and equation C.1.2

into the third term, comparing with a combination of equations

C.1.2 and C.1.3, replacing Q by Q+2, M by M-4 and S by S+2 through-

out and writing
1

ZB3PQHGS ([A], [B]) = J (A(y))H / 2  yG (B0 (y))S/2

0
× f1xP (B(x,y)) Q / 2 dxdy (C.1.9)

0
where [B] is a matrix whose first row is B0 and[A] is a vector, the

following equation is obtained

0 y m-3 [O] R] 13 ZB3P(Q+2)HG(S+2) ([Roc], [Ry])

y=0

2 2-i 2-i-j 2 2-z
E E E E E (I (Q+2)j + M-3+ (S+2)

i=0 j=0 k=0 £=0 m=0 2 2

ijk Om Cl (P+i)Q(M+j+X-4)S(G+k+m)H

* Techniques for solving ZB3PQHGS ([A), [B)) are similar to those presented

in Appendix S. 2 for Z ([A], [R]).

t
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or, separating the terms for which i+j+k=2, Z+m=2,

2 2-j 2 1 RM
E E Z (Q+2) j+ M-1- T-+S-m) R (2-jk)jk RO(2-m)m

j=0 k=0 M=O

x ZCl (P+2ik) Q (M+ j -a-2 ) S(G+ k+n) H

=y Z B3P(Q+2)HG(s+2) ([ROO], (Y =

2 2-j 2-j-k min(3-i-j-k,2) min(3-i-j-k,2)-m

j=0 k=O i=O m=0 Z=O

i-(Q+2) j+M-3+ - (S+2) 1) R R z
'22 ijk 0km Cl(P+i)Q(M+j+Z-4)S(G+k+m)H

(C.1.10)

It is to be noted that equation C.l.7 helps to write Z ClPQMSGH

in terms of other Z 1 . . . with smaller values of P but larger.,

values of M and G. Equation C.1.10 gives Z 1 in terms of

other Z 1 . . . with smaller values of M but larger values of P

other Z 1 . . . with smaller values of G but larger values of P and

M is derived by integrating the integral on z in equation C.1.1 by

parts to give
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z ClPQMSGH z G1 (R 0 0(z)V'/ Z~lQS'z' =

2 2-i 2-i-j
E Qk R Z

i=0 j=0 k=0 2 ijk Cl(P+i) (Q-2) (M+j)S(G+k)H

2 2-j
E= E - Sk R Ok ClPQ(M+j) (S-2) (G+k)H

2

E-2kH0 2 00k zC1PQMS(G+k) (H2) ~(~~l

Substituting equations C.1.3 and C.1.4 into the second term,

equations C.1.4 and C.1.2 into the third term, equations C.1.2 and

C.1. 3 into th ort pn comparing the result with a combination

of equations C.1.2, C.1.3 and C.1.4, replacing Q by Q+2, S by S+2,

G by G-6, H by H+2 throughout, the following equation is obtained:

0 - G-5 ( 0 (z)) (H+2)/2 Z~l(+)~+) (1 2 ) 1

2 2-i 2-i-j 2 2-z. 2

i=0 j=0 k0 9X=0 m=0 n=0

(!(Q+2) k-4-(S+2)m+G-5+!-(H+2) n)

R R kR Z
ijk 00i On Cl(P+i)Q(M+j+ZAS(G+k+m+n-6)H (C.1.12)

or, separating the terms for which i+j+k=2, Z+,-a2, n=2
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2 2-j 21
E E (-f (Q+2)+ (S+2)m+G-5s(H+Z)R RO

j=0 k=0 rn=O2 (2-j-k)jk 0(2-m)ni

xR002 zCl (P+2-j-k)Q(M+j+2-m)S(G+k+n-4)H

G-5 (H+2)/2 (~~1
z ( 0 0() ~ BlP(Q+2)M(S+2) 'LZ' j Z=0

2 2-i 2-i-j 2 2-f min(5-i-j-k---m,2)

i=0 j=0 k=0 Q~=0 m=0 n0O

(.L(Q+2)k+i (S+2)m+G-5 +1(H+2)n) R'j R9. R~

ZCi(?+i)Q(M+j+Z)S (G+k+m+n-6)H

(C. 1.13)

As suggested in the discussion on Figure C.1.2, equations C.1.7,

C.1.10 and C.1.13 can be used for various values of P, M~ and G in

order to generate enough equations to solve for all points on the

constant P+M+G plane simultaneously. Figure C.1.3 shows the left-

hand side points of equation C.1.7 (i.e., each application of

equation C.1.7 yields a linear combination of a cluster such as is

shown in Figure C.1.3). Similarly Figure C.1.4 shows the left-hand

side points of equation C.1.10 and Figure C.1.5 shows the left-hand

side points of equation C.1.13. At least one of the equations is
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applicable at each of the points and is solved simultaneously to

give the value of at each of the points.

The case where Q=S=H=O is of special importance because it is

involved for the far field case (see Appendix D for details).

The three integrals in the definition of Z C1 . . . . . decouple in this

case and

1ClPOMOGO (P+I) (M+I)(G+I) (C.1.14)

II$1 I I 1 | 1 T
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C.2 The Computation of Z C2NPQMSGH

By definition,

zC2NPQMSGH f z ,( 0 (8)/2 jyM(R 0(y,z)) S2f ((,,) 1

00 0
P )Q/ 2
(R(x,y,z)) dxdydz (C.2.1)

Writing (.)n =(n-2 ()2 itis easily proved that

2 2-i 2-i-j

Z C2NPQMSGH E E A ikZC2N2(~)(~)(~)
i=O j=0 k=0 j 2N2 PO)C~)(~)

(C.2.2)
2 2-i 2-i-j

C2NPQMSGH E= R= = ijk ZC2N(P+i) (Q-2) (M+j)S(G+k)H

(C.2. 3)
2 2-j

zC2NPQMSGH j= E-R Ojk zC2NPQ(M+j) (S-2) (G+k)H

(C.2.4)

2

zC2NPQMSGH ER00k zC2NPQMS(G+k) (H-2) (C.2.5)
k=0

4Equations C.2;2 through C.2.4 are used as recursion relations

for desired values of N, Q, S and H in terms of (smaller) given

values of N, Q, S and H. Relations for giving ZC2 . . .. . . ... for

desired values of P, M and G are derived as follows:



C-17

Integrating equation C.2.1 by parts with respect to the

dummy variable x and applying equations C..2.2 and C.2.3,

ZC2NPQMSGH 1~ 0~ J G( 00(z) f , ( 0(yz)

xZC(NZ) (R~~i (Q-2) (C.2.

Comprin wit a cobnto of eqain (-f, an +. a5Qd An-

ing N to N+2, P to P-4, Q to Q+2 throughout,

0 x P-3 z B3(N+2) (Q+2)MSGH I [Ax], [R4,E'R a]O)] 1=

2 2-i 2-i-j 2 2-t 2-E-n
E~ E E( E E i1(N +2)~-3 + k (Q+ 2)

= j=O k=O t=O M=O n=O

x A ijk Rim Z C2N(P(4-ii))Q(M+j+m)S(G+k~n)H (C..2.7)
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Z B3NQMSGH ([A], (B], [C]) f y G (c0(y)) H/2 f (A(X,y))N/'2

(B(X,y)) Q/2 X M C(xy)) S/2 dxdy.

(C.2.8) *

Separating all terms in equation C.2." for which i+j+k=2 and

2.+m+n=2, the follo-irnn recursivc relation is obtained:

2 2-i 2 2-t.1

i=O j=O 9,=O M=O 2 2 imi-) A(2 - km

X Z C2a (P-(4-i-.) )Q(M+j+r)S(G+4-i-j-.-m)H

XP3zB3(N+2)(Q+2)MSGH

2 2-i 2-i-j min(3-i-j-k,2) min(3-i-j-k,2)-. min (3-i-j-k,2)- -m

i=O j=O k=O X M=O n=O

( ±(N+2)+P-3+- L(Q-2)) x

A ijk R kmn z C2N(P-(4-i-P))Q(M+j+m)S(G+k+n)H

(C.2.9)

*Techniques for the solution of Z B3NQMSGH([A],[B]I[c]) are

similar to those presented in Appendix B.2 for Z B2NPQMS ([A],[R]).
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If equation C.2.9 is written with N-N0, P=P0 ' etc.,

each of the terms on the left-hand side has P+M+G=P 0+M0+G0 .

The terms on the right-hand side have P+M+G=P 0+M0 +G0-n where

n is 1, 2, 3, or 4. This statement implies that none of the

points on the right-hand side of equation C.2.9 fall on the

(P0+M0+G0= constant) plane. Figure C.2.1 shows a plane of

constant P0+M0 +G0 . Recursion relation C.2.9 may be applied

to all points on this plane for which P0,3. Equations that

may be applied for smaller values of P0 are developed next.

Integrating equation C.2.1 by parts with respect to the dummy

variable y and applying two of the equations C.2.2 through C.2.4

to each term except the first,

ZC2N.M =

1 1

G(ROO-lO(G 1Y~z)S/2 f (AR (xzz) dNd2zy jfz( 4(R. X, Z)/)) N/2 PJ2 3
2 2-i 2-i-j 2 2-t 2-t-m 2 2-p 1 1 1

- 2 Qm+FSp)
i=0 j=0 k=0 £=O m=O nO p=O q=O jQ+

x Aijk Rm Ropq ZC2(N_ (p+i+t) (Q-2) (M+j+m+p) (S-2) (G+k+n+q)H1

(C.2.10)
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Comparing equation C.2.10 with a combination of equations

C.2.2 through C.2.4 , changing N to (N+2), Q to (Q+2), M to

(M-6), S to (S+2) throughout, and separating all terms for which

i+j+k=2, k+m+n=2, and p+q=2, the following recursion relation is

obtained:

2 2-j 2 2-m 21 1
E E Z E (- (N+2)j + . (Q+2)m + M-5+1 (S+2)p)

j=O k=O m=O n=O pO

x A (2-j-k)jk R(2-m-n)nmn ROp(2-p) ZC2N(P+4-j-k-m-n)Q(M-(6-j-m-p))S(G+k+n+2-p)H

Y 5 ZB4(N+2)P( 2W(S+2) ([Ay],[Ry],[R0 0 ] )i
y=O

2 2-i 2-i-j 2 2-P 2-i-m min(5-i-j-k--m-n,2) min(5-i-j-k--£-m-n,2)-p

i=O j=O k=O i=O m=O n=O p=O q=O

1 1 1

(I (N+2)j + 1 (Q+2)m + M-5 + 1 (S+2)p) A R R
2 2 2ijk RPMn OMx

x Z C2N (P+i+£) Q (M- (6-j-m-p) ) S (G+k+n q )H (C. 2. 11 )

where 1

ZB84NPQHGS (QA], [B] ,[C])t f0 (C(y))H/2 ySG (B 0(y)) S/2

0

x (A(x,y))N/2 x (B(x,y))Q/2 dx dy (C.2.12)*

* Techniques for the solution of Z are similar to those presented

in Appendix B.2 for Z B20NM([A],[R]).

Jt

',
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Here, [A] and [B] are matrices, B is the first row

0

of the matrix[B] and [C] is a vector.

Integrating equation C.2.1 by parts with respect to the

dummy variable z and applying three of equations C.2.2 through

C.2.5 to each term except the first,

1 11 z G+I RoZ ) H/2 y0 MR() S/2 0)N/2
Z- (o(z) f Ozy/ f (A (x,y, z)

x P(R(x,y,z))Q/2 dx dy 0

2 2-i 2-i-j 2 2-Z 2-Z-m 2 2-p 2 1 1

i=0 j=0 k=0 Z=0 m=0 n=0 p=0 q=0 s=0

x Aijk Rbm R0I R0os  ZC2 (N_2) (P+i+z) (Q-2) (M+j+m+p) (S-2) (G+k+n+q+s) (11-2) i

(C. 2. 13)

Comparing equation C.2.13 with a combination of equations

C.2.2 through C.2.5 , changing N to (N+2), Q to (Q+2), S to

(S+2), G to (G-8) and H to (H+2) throughout and separatinq all

terms for which i+j+k=2, Z+m+n=2, p+q=2 and s=2, the followinq

recursion relation is obtained:
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2 2-k 2 2-n 2 111
E E E E (-(N+2)k + !(()+2)n + !(S+2)q + G-7+(H+2))

k=0 i=O n=0_ 9,=O q=0 22

x A RZ(--l RO(- RO Z
i (2-k-i) k 2,(--)n0(-)q02 C2N (P+i+i)Q (M46-k-i-n-i-q) S(G-(6-k-n-q))

=ZG-7 (R0 0(z)) (H+2)/2 zB2~)(2MS2 ([Az],[R~]

2 2-i 2-i-j 2 2-L 2-i-n 2 2-p min(7-i-j-k-I-m-n-p-q,2)

i=0 j=0 k=0 Z=O nr=0 n7=0 P=O q=0 S=0

((N+2) k + ( Q+2) n + .1 (S+2) q +G-7 + 1(H+2) s) A.. M Ro

X C2N(P+i+i) Q(M4-j4~n4p) S(G- (8-k-n-q-s) )H

(C. 2. 14)

One of equations C.2.9,C.2.ll or C.2.14 is applied for each

(P, M, G) in Figure C.2.1. The resulting equations are solved

simultaneously to give each of the Z2.... A much simpler
C2. .. .

set of equations is generated for Q=S=H=0. This condition applies

in the far field case (see Appendix D). The first of the far-

f ield case equations is obtained by integrating the equation
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z C2NPOMOGO f z G f ~M f (A(x,y,z)) N/2 xP (C.2.l5

by parts with respect to the dummy variable x to give

ZC2PMG xP~1  fzG f/yM CAx(y,z)) N/2 dydz]
10 0 =

2 2-i 2-i-j 1
E E -Ni A. Z

i=0 j=0 k-0 2 ijk C2(N-2)(PiOMjO(+)
(C. 2.16)

Comparing with equation C.2.2, replacing N by N+2 and P by P-2

and separating all terms for which i+j+k=2, the recursive relation

2 2-i1 1
E (-(N+2)i+P-1)A.. ii C2N(P-(2-i O(M+j)0(G+2-i-j)0

i=0 j=0 2 j -i )

- ~ lz ZBlM(N+2)GO ([Ax])l=

1 1-i li- 1
E E(E (N+2)i+P-l)A ikZC2(-+)(~)(~)

i=0 j=0 k=0 j 2(-+)(O)(~)

(C.2 .17)

is obtained. This relation can be applied for all P>,l. .-. second

far field case equation is obtained by integrating equation C.2.15

by parts with respect to the dummy variable y to give
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zC2P G 1 y M+l fzG 4 (A (x,z)) N/2 x P dxdz]

2 2-i 2-i-j
E E E Nj A..

i=o j=0 k=O 2 JJ ij C2N2)Pi )(~jOG,)

(C. 2.18)

Comparing with equation C.2.2, replacing N by N+2 and M by M-2

and separating all terms for which i+j+k=2, the recursive rela-

t ion

2 2-j (-N2j+-)
j= (k (+ 2 2Ml)( 2jk).k ZC2N(P+2jk)O(M-(2-))o(G+k)O

YM1 Z BlP(N+2)GO ((A]) =

E (2 ((N+ 2)i+M-l)A ijk Zc2N(P+i)O(M-(2-j))o(G+k)O
>0O j=O k=0

(C .2.19)

This relation can be applied for all M; l. A third f,-r field

equation

2 2-k 1

2 (iN 2 k+~)( 2 k)k ZC2N(P+i)O(M+2ki)O(G-(2k))o
k=O i=0

G- 1 1
zG1zBlP(N+2)MO ([ZI L

1 1-i l-i-j 1
- (2 (N+2) k+G1) A ijk ZC2N(P+i)O(MI)(G(2-kflO
i=O j=0 k=()

(C.2.20)

Mim
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is derived similarly. This relation can be used for all G:l.

A constant P+M+G plane is shown in figure C.2.2 and a strategy

for calculating ZC2NPOMOGO is outlined.

-4

I

I -- -
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* 03. For P0 =3 to n

For MH,=O to n-P

* * *Use equation C.2.17 to
solve for (M0,P 0).

0 0 POP

la: Apply quation 2. For 14 3 to n

C* 2 whe P>OFor P-2.1 apply equation C.2.17.
lb. If -0I M>01 For P-0 apply equation C.2.19

ap y equation Solve for (Mo-2,2) (M 111) (M4 0) simultaneously.

ic; If P-:, 1=0,
apply equation
c.2.20.

Solve for these six
points.

Figure C.2.2
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APPENDIX D

THE NUMERICAL PROCEDURE FOR THE COMPUTATION OF

WW WS SW SS
Z0 , Z0 r Z0 S SWAND Z 0

WW WS SW Ss

Equations for the computation of Z0, , and

have been developed in sections 2.3, 2.4 and 2.5. These are

developed further in this appendix to a form that is more con-

venient for computational purposes. The partial sums are subject

to a high degree of instability when the distances are large

compared to the sizes of the segments. For this case, separate

far field* solutions have been developed.

Equations 2.3.8 and 2.3.12 are used for computing the

WW WWmutual impedances from Z0. For the purpose of computing Z0
W

it is appropriate to collect terms of order (n +p) together.

Writing q = n +p, and noting that

*Traditionally, far field implies a region far enough so that the

field on the receptor can be considered a constant. This is not

the implication here when the term far field is used. Instead,

far field implies a region far enough so that Z/r, the ratio of

segment size to distance between the receiver and transmitter

3origins is small enough that (t/r) is negligible compared to i.

I
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I~i! i ' m'+q i qj
[Mi)n':) q- = m'! n! (i-m'-q)! (qn) ! = m'+q me

where m' = r-n, equation 2.3.18 can be written as

/ .. s+IA v r a

2 (-1) as(exp -jkr +1 (A j ra

0 =l 2j sin k,

x E a i (jkka) Z (l-l-l) Z 2 iE-I

i=O q=O a m'=0 m'+qj m

q q nn0ZA2,(s+m') (n+,) ([A], [R]) (D.1)

When Z << r1 0 , all ZA2 (s+m')(+) are of the order of

ZA2v(s+m,) and the innermost summation results in the sub-

traction of almost equal quantities. Therefore, it is appropriate

and convenient to express the quantity

q [q) (_)n (D.2
n [ -I ZA2v(s+m') (n+a) ([A],[R]) R0 n (D.2)n=0n

as a series in R and R Inoting that R. is of the order1 2
I.rlI 2 Since R0  is 1, the last factor contributes nothing

to the expression. However, its introduction makes it easier to

generalize the equations being developed here to wire-to-surface

and surface-to-surface equations.

. .. . .... ... . ...I' - -
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The application of the binomial theorem gives

(R0 + R x + R X2) R0  h + ~-(1+ R 2 )

- oST 1  + R 3

00 -o C,- oO+E -
6=06=1 [=[

(D.3)

The results of equation D.3 are used for rewriting the equations

for Z*" in a form that is numerically rugged when Z<<r. Thus

* 'the quantity under consideration in equation D.2 becomes

a. q

00= Cofi =0 [= 0 0o=1

n [0(jfJ[) RohaG80 RO 0  R X dx (D.4)
(E0 2 +
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The quantity in the square brackets is empirically found to

be zero* for 8a < q. Thus the expression D.4 can be written,

(using B0 = W-q)

O B

q+ 0+q) q 0- 0 0

~O E00

x A Z[^],[R])
aqa; ZA2v(s+m+ 0+E+q)O([ (D.5)

A formal proof was not attempted in this effort. However, that

the summation in expression D.2 should be of the order

becomes obvious if one writes
q (-i)n
Z ZA2, (s+m') (n+L)

n=0 n~

X54~ (R(x)) E [n~o{)(l~(~~ x
"' 0 n=O

0
All factors except the square brackets are of order 1. The

quantity inside the square parenthesis is, by applying the

binomial theorem in reverse,

(, 1- 0 (x)}q = 0 1- [1+ (RI + R2 x = -Rix - R2x2

qL) f [ Rl rllo) x- [R2 rllo) X2q

The quantity in the second factor is of the order 1. Thus the

quantity in square brackets is of the order (r%) q

' ,
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where

q [qj n 1 06+q [
A q(- ) I (n+cz) - (60-1) if >0
ciq8o n=O n (6 +q) 60=1

=0 Otherwise (D.6)

The quantity inside the summation in expression D.5 is of

the order [ r 0 ) 8+e 0  Writing expression D.6 indexed on

no = 66 + eo and truncating the infinite series after no =2

2 (q+no) (q+n 0 - 0  ha -(q +n
R l~ 1 E E C00 0 0

ro=O £0=0 £

nO-2cO o
x R

1 x R1  R2 0) ZA2v(s+m'+q+n0)0 (D.7)

Thus for k. < r, ,' equation D.1 is implemented using

2 (_1) CF S exp(-jkrll 0 ) t s+l (A v rlQ
(-1 WW E a s 0 (A0)

0 0=1 2j sin k t

5 ii i+q i )m' +q
x E a i (jk t,) [1- (-) ) i mi+fmr 1(-)m

i=0 q=0 m'0

q 2 Ro no (no4q) {q+no_ o) cR1 ruO

no=O [Fio=O oo

x A z
aq(n 0 - 0 ) A2v(s+m,+n0+q) 0 (D.8)

S I- ---- - "
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The above equation has been written so as to keep all partial

sums independent of the ratio which may vary considerablyr110

in the computations depending upon the geometry. Thus all

partial sums in the above equation are well behaved.

Computation of wire-to-surface and surface-to-wire

impedances is performed using a strategy similar to one used

for computation of wire-to-wire impedances. Equation 2.4.17a

is written as

as s+l C y r
= 2 (-l) exp(-jkr0 1 0) la A0 0  010

a=l 2j sin k

55
x E a. (jkt.) a (jk al-

i=O il=0 ai T T

q=0 L'-'-i _ m'= H mI

q [qj n i l  il]
x (-i) r ml (-I) ml

n=0 ml=0

x ZB2v(s+m) (n+a)e(q-n+mi)([A] '[R] ) (D.9)

_I ,-_ r '
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It is noted that the variable n occurs in two of the ZB2 .

indices. This makes the application of recursion relations

B.2.2, B.2.3 and B.2.4 inconvenient as the summation is exec-

uted.* The summation is made more convenient by writing

equation D.9 to give

0e 2 (-1) exp(-jkr0 1 0) £s+l (Ay) v r= E 01 a 00 r010

a=I 2j sin k Z a

5 i i i i+q r0 1 0 ,q -q-x E a (jk£ ) E (-i)n  E (i-(-i) ) - --

i=0 1 n=0 q=n o _f_

ri-q .5 m 5i m (E (-l)ml E a (jkm'=O m1=0 1=m ai

r i i
Z• 1],-- - ZB2v(s+m') (n+ot)e (q-n+m )

*There are two approaches to evaluating the expression D.9. The

first is to fill a 5 dimensional matrix with the appropriate values

of ZB2 ..... and compute according to equation D.9. This approach

is attractive but would take approximately 2K of core for storinq

ZB2 . . . . . and approximately 1OOK for storing ZC2  in comp-

;Suting Z Since this is too large, a second approach, that of

calculating the base values of Z B2......(and storing them) and

then using equations B.2.2, B.2.3 and B.2.4 as the summation

proceeds,must be used.

Iii
*1
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or, writing q-n+m =n, as a summation index,

WS= 2 (lasexp (-jkr ) z j~' (A~yl ')r
Oe =1 2j sin ki a

5. i 5+i-n min (5,n 1)x E a.i (jk. a E (-1),
i=On= n1 =0 m1 max(O,n 1+n-i)

i-(n+n 1-M 1) i mm'+nn -m

m'=0 (M '+n+nm) 1- 1) -1

x 5 (~ai1(jk i 1 0oo1m10- 1~~~' nae

(D.10)

As in the wire-to-wire case, it is appropriate and convenient

to express the quantity

q 4
E n (-1) n E (-l)mlR0 0 1ml

n=0 m~~1J=(l)0 B2v(s+m')(n+a) e(q-n+m 1

(D.11)

in equation D.9 as a series in r(-a-) when Orl*

010___I

-No
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In the wire-to-surface case, Rois 1.

The last factor has been included to facilitate generalization

of this development to the surface-to-surface case. Expression

D.11 can be written

r1 1(l 00 R. 0,

E [ n R~ (-) (y)) f (Ax(x,y))h s+m' (Rx,y)) (n X dXy
0

The term inside the square brackets is recognized as expression

D.2 and is replaced by its equal expression D.7 to give

' fij m,) - m1  2 (no~q) Aq+o C
m1=O I 00 otioO -=0

(q+mj+a)-(q+nO-cO) q+ri0 -2c 0
X x y e(R(y)) (R(y'))

0

x J (A(x,y)) hvX dxdy (D.12) d

0
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2 (~0 q) q£ocoC0

E C 0o aq (n O-e R 20
no=0 £O

q+n0 -2co (q+n0-2co~ q+rn0-2co-yo Y

x YO 0YO 1 0  R 11

e+y 0  (q+o,) -(q+n -CO) 1j i.
x y 0(R (y))0 m =0 tmJ(-1) RI21 (R0 (y))m/

0

x f 1(A (X,y) ) v2X m'n4dxy (D.13)

0

or by a development process similar to that used in developing

(D.7)from (D.2),

2 (n04q) iA

n -- CO=O CO J q(r1-co) 20 10

q 0  q26 0 2 -Y
X E R4~ R 0  R 0 R0

Y =0 01 1 0

2 h(n 1 +i1 ) i~jc
x E E il A(ariiV-e-1)i (j-j

TI =0  C 1=0

Rtoo 01 R0

z B2v(s+m'+q+rn 0 )0(e+y0 +i+n,) 0 (D.14)
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Thus, for ta 'X <-c r 0 1 0, equation D.9 becomes

z~ WS exp(-jkr 0 1 ) (ACYN hv r -)as

O) 00 010  Ein'i
a1l

x Za 1 (jktL0)
1  E ai1  (Jkt;) 21 ~l( i+q)

i=0 ij'=0 q=0

x i qi (-1q)

m =0 (M (q IMI (-)

2 noQ h(ri0+q) (q+n -0x A ro

~q+r 2c Z.,oYO jRl rl ~q+T10-2c0-yo [Rl r2 Yoxq+n 0 -2co T0q I 0000JlOO
Y0=0 Y' 0 too 0 ta J

2~~ '1+nj-cjj Rol rol i1 0  -cx E E

x A (a+q-2(q+nQ...o)) ( 1 ) Z B2v (S+m+q+n) 0(e+ 0+i+)O

(D.15a)



It is to be noted that ali partial siums ink equation D.15a are well

behavd. Similarly,

SW 1 (A)v 2 (-1 s+lz =2exp(-jkrl 0 0 (") r,-
Ofa 010sin ki ta

x :a. (jkz0  E a. (jkz ) 1E 1 ( ql
i=O a i1=0 i1 q=0

m'=O

2 no(o) qn-e a~o~

q+nc-c , OR r 1 Tj2c- R1 r' "
X,~ 1 10 100 00 _ 1001

x E I I111210

x (a-2n,+2e 0 -q)i 1 (ii-cj) zB2v(s+m'+q+no)0(f+yo+il+i1 )0

(D.15b)
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For the surface-to-surface case, combining equations 2.5.6 and
2.5.9,

Zf-2 (-1)(l exrp(-jkrOOO) Z + (A cyn) v ra0
1 S 2j sin kk 0  000

5 .5 .lrO 5 12 [OOi
x z a.(jkt, 1 a2 (jkt') - E a2 (jkg foi

1-O i1=O T 12=0.

q=E 1(-)i+ ) 00) M' -0 ~ { (
q=0 Ln ' miOT= t)(1

x C2v(s+m')(n+a)e(q-n+m)f(i-Ml-'M 2) (tAIJ[RI) (D.16)
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or, similar to equation D.10,

2 (1) a S ex ( jis+1 (ACY 'l)hvraoo
exp(-jEr 0 0 0 ) a 000 0

Qef =12j sin k

5 i 5+j-n min (5,ni1
x E a1i (jk a )1 Z (-1)n

i=0 n=0 n 1=0 m,=max(0,n 1+n-i)

x (1 ~ -~~iml) (n+n -m 1) 1_m (r00 03 n+n -m 1

i-(n+n 1-M 1  (m+( 1- 1  '+n+nl-m ( 1 I

11 ~1 \f~ 1 2 2 25 i

xa 2 )jk C2v(s+m') (n+ct)en 1f(i -m 1+m 2)

or, writing i 1-m 1+m2 = n2 as a summation index,

2 Oss+1 (A~y T) v a
SS(-1)o exp(-jkr 0 )z.00 r 0 0

0=1 2j sin kC

5 ij~) ~ (1 5+i-n min (5, n)

10O n=0 n1 0O m1=max (0,n 1+n-i)
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i-(ri+n 1-m 1  m'+n+n- me
x E

m'=0 (m'+n+inl-m) m'

10-M 1  min (5,n2)
x E m +n -m m

n 2=0 m2= max(0,n 2+m 1- 5)2aM(k m 2m2-

i2 ) (kO) 2 1 ([A],(kr00  ( ) "

i5=m ('i2 Nc2v(s+m' ) (n+c)en1fn2  r])

(D.17)

When r000 is large, the innermost summations in (D.16) are

evaluated by considering the expression

q O [qj _, n 1'0 -"1 i2 M 2

n = ( -n m li I 
n=0  m 0 M2=0 m

x ZC2v(s+m,) (n+c)e(q-n+ml)f(il-m1 +m2 )

i2 i ) m2 f f (z)) (i i2) i-

~1

x y E [ -q) (R0 (y,z))
f n=0n

x f (A (x, y, Z))hVX", (R (x, y, Z)h o) dx d]dz
0

(D.18)

<I
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The term inside the squiare brackets is recognized as

expression D.1l and is replaced by its equal expression D.14

to give

2 2M f E '~i EQ:

EA (R (z))

(R~ ~ ~ (zpn-oxE q+o2co ( (z)) RYo Ra

10Y (Y 0  10 ((Z)) R0 1

XZ EC A qa2qn-oijjcj

X'0 0 J eVy,+lIn J xy )x~'q, dx dy dz

0 0 (D.19)

Where the limits of the summations are the same as have been

noted before. The above expression is rewritten as
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ZO Ef[+no-c 01 Aaq(n0 -c0 ) ' 8o

q ~ o - coI q+Tj0E2 -2 l-c 0y q+riO-2c O-y- -y IY I Y 0

YO y0 Y.0 t Y 1OO P-101 R110

ij~j-2j i+nl-2ei iI+n 1-2 c 1 -Y2
E 0R a l yj I RE :1

Y2 Y 2 j 10R 0

x f 2f+y 1+Y2 (R0 0(z))h(++i)(q+n0-0)-(ij+n1le1)

0

j f(l) 2Ro(i2.J Ye~h'0+ii +n 1Axyz 3V 4'q,

M200 0

dx dy dz

(D.20)

This expression is developed similar to the development of

expression D.7 to give
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z E f~+o~e~'Iaq(no-co) R290
no co CO~

q+n%-2c 0 yr y Y,
q(q2o ~o2c-O no-2co-YO -y~ 1 0

z R100 R101. 1?lo

ii.+ 1-l'I A (q+a- 2 (q+n 0-co))i (n 1 - C1

i n 1-c1 i -2 iJ,2iy

R fy
Y2~ 010 031  R 0 0

2 (n+i2) (i2 +rn2 2 t j2 +% 2 2  R 2

E e~2 001, R002
n2=0  C2=0 .-

X z C2v(s+m'+q+no)o(e+-y +i 1 +1 1)0(f4-y1 4y 2 +i 2 +r12 )0 (CAI,(R])

(D.21)

Thus, for the far-field case, equation D.16 is written as
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=2 (-1)0 exp(-jkrOOO) to s+l A Yln v r a
Oef a=1 2j sin kt a

Z a.i(jktcy) E i al (jktL) E ai2 (jktC)
1=0 i1=0 i=

(r q )io -+q (,q- 0' A R1Oeo)O q R1 0 r 00 ' l[0 oro

na=O 000 O c (M m. jt

(q+n0-2e0 ) q+n0-2co O-Oy

Et (q4.fo2 oyo)f n..2.f} l 100 000 roYYO JF1100 yE f

RY100  1 000 0'= a0~

2 . tclt J

z~ ~~~. Ert j ii)I(q.,..2 (q+nQ....o)) il(n 1c ) r Tloo1e

'.000(Continued...
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il+ni-2 c, R ~~R 1 r 0 Y 2 fR l 2
0 0 1' 2

E i +J12c 01 000r~~

f2~ 2~2  U(2 +n2) (i2 01r+00n2 2C

EZ ( -t& ] E '2+122C

xzC2v (s41n'4q+ )(ey 0+il+nl) 0(f+y1 +y2 +i2+fl2 )0[4 R(D2)

Alm
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